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1. Introducere. Contextul stiintific.

Consortiul FORCLIMIT sustine ca potentialul de reducere de emisii asociat padurilor
din Europa este semnificativ, dar insuficient utilizat in cadrul politicilor UE privind clima, si
dam ca exemplu Regulemantul LULUCF (Regulation (EU) 2018/841 of the European
Parliament and of the Council of 30 May 2018 on the inclusion of greenhouse gas emissions
and removals from land use, land use change and forestry in the 2030 climate and energy
framework, and amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU (Text
with EEA relevance). Luand nota de insuficienta efortului global de reduceri de emisii,
Parlementul European recomanda printr-o rezolutie din Noiembrie 2018 ca UE sa devina
neutrala climatic la jJumatatea acestui secol, ceea ce justifica si mai mult nevoia de clarificare
a contributiei padurii si sectorului folosintei terenului.

Pana in prezent, resursele forestiere si Sectorul forestier european au compensat
aproximativ 13% din emisiile cauzate de utilizarea combustibililor fosili Tn Europa,
reprezentand aproximativ 569 Mt CO2/an (Nabuurs et al., 2015), rezultate din sechestrarea
carbonului in paduri si din activititi de evitare a reducerilor de emisii. In aceasta propunere, ne
concentram 1n mod special pe potentialul de reducere de emisii al padurilor si al resurselor
forestiere (o parte semnificativa a asa numitului sector LULUCF ce include folosinta
terenurilor) Tn cadrul mai larg al sectorului AFOLU (IPCC, 2006), care include Agricultura pe
langa LULUCEF. Potentialul suplimentar disponibil de reducere de emisii al padurilor, al
solurilor si al resurselor forestiere este ridicat, insad acest potential este incert, pe de o parte, din
cauza lipsei de stimulente din partea politicilor existente si, pe de altd parte, din cauza
incertitudinii privind aplicarea si efectele activitatilor desfasurate in acest sens de proprietarii
de paduri si utilizatorii de resurse lemnoase. Noi abordam aceste doud aspecte impreuna,
deoarece numai astfel pot fi facute progrese evidente.



FORCLIMIT are trei obiective principale:

(1) sd analizeze si sa propuna imbunatatiri ale cadrului de contabilizare reduceri de emisii
intr-un cadru de politici unificate international, care sa faciliteze o contabilizare consistenta a
emisiilor din paduri din diferite tari;

(2) sd analizeze strategiile economice si ale politicilor existente in motivarea
proprietarilor de terenuri ca acestia sa depuna eforturi pentru reducerile de emisii din paduri si
lantul de custodie al lemnului;

(3) sa adauge la sistemul MRV actual, care vizeaza doar estimarea nationala a emisiilor,
posibilitatea de estimare Tmbunatatitd la scara mica, ex. Arboret, unitate de administrare,
precum si evaluarea masurilor economice si a politicilor existente. Acest lucru este demonstrat
prin trei studii de caz in trei tari diferite: Olanda, Romania si Suedia.

2. Metode si rezultate

Ca si n anii precedenti, activitatile realizate in 2019 sunt prezentate in format de publicare in
anexe. Anumite sectiuni includ informatiile suplimentare din anul curent. Urmatoarele titluri
prezinta succint aspectul stiintific abordat si legatura cu pachetele angajate prin contract. Pentru
fiecare titlu sunt mentionati contribuitorii principali. De asemenea se face referire si la
articolele publicate (inregistrate si pe platforma la raportarea pentru anul 2019):

a) Rezultate curente privind experimentul privind “cuantificarea descompunerii
litierei prin metoda litter bag™ (C. Petritan, M. Miclaus, I. Dutca, V. Blujdea)

Rezultatele cumulate obtinute de la inceputul priectului sunt prezentate in Anexa 1. Activitatea
face parte din WP4. Metodologia initiala a fost descrisa in Raportul anual din primul an de
implementare 2017 (Raport 1), aici fiind repetata pentru transparenta si continuitate cu ajustari
minime in urma aplicarii in teren. Experimentul asociat a constat Tn amplasarea a 640 plicuri
cu litiera si a 448 plicuri cu lemn mort in 4 tipuri de padure de pe raza O.S. Padurile Sincii (jud.
Brasov). Experimentul va fi urmaérit pentru o perioada de 3 ani prin prelevare de probe potrivit
calendarului din metodologie.

Tn anul 2019 au fost prelevate céte 5 plicuri de litiera in lunile Aprilie, unie, Iulie si Septembrie
conform agendei prestabilite in anul 2017 si modificata Tn 2018. Tn anul 2020 se vor efectua
ultimele 2 recoltari in Mai si Septembrie. De asemenea in lunile Aprilie, lulie si Octombrie
2019 au fost recoltate céte 6 probe pentru fiecare varianta de studiu in cazul experimentului de
descompunere a lemnului de mici dimensiuni (sub 5.6 cm diametru). Si in acest caz am redus
de la 8 la 6 numarul de probe pentru fiecare recoltare ceea ce ne ofera avantajul unei prelevari
suplimentare dedicatd anului 4 (2021) st anului 5 (2022).

Probele au fost recoltate si transportate n laborator unde dupa cateva zile de uscare la
temperatura camerei au fost scoase din plicuri, curatate de orice impuritate externa si uscate 5
zile la 80 grade in etuva. In urma recantaririi dupa uscare, am putut determina care a fost
procentul de pierdere in biomasa prin raportarea la masa initiala (masa avutd la momentul
instalarii in teren).



Tn figura 1 (anexa 1) este redati dinamica descompunerii frunzelor si acelor in primele 24 luni
ale experimentului pentru toate cele 8 variante de studiu, cu punerea accentului pe scoaterea in
evidenta a variabilititii in cadrul fiecarei etape de recoltare. In figura 2 si tabelul 1 din anexa 1
sunt redate modelele si coeficientii aferenti acestora, modele ce descriu relatia dintre cantitatile
de masa ramasa exprimate ca si procent din masa initiala si timpul de descompunere (exprimat
in luni). Cele mai mari rate de descompunere, dar si cele mai mari valori ale coeficientilor de
determinare ale modelelor au fost inregistrate la specia brad, cu o usoard tendintd de
superioritate pentru arboretul virgin comparativ cu cel parcurs cu lucrari. Contrar asteptarilor,
fagul, singura specie de foioase din cele trei studiate, prezinta ratele de descompunere cele mai
mici, avand de asemenea si cele mai mici valori ale coeficientului de determinare pentru
modelul exponential negativ folosit la ajustarea dinamicii descompunerii. Molidul prezinta
valori intermediare celorlalte doua specii. La speciile de rasinoase, descompunerea in padurea
virgind a fost mai intensd comparativ cu padurea parcursa, in timp ce la fag a fost depistat un
comportament contrar.

Asa cum se poate vedea din Figura 3 a anexei 1, la categoria de lemn foarte subtire (d=0.1-
2c¢m) cea mai mare rata de descompunere s-a inregistrat la specia bradul din padurea virgina
(pierdere in biomasa de 20% 1n Iulie si 25% in Octombrie), urmata indeaproape de fagul din
arboretul pur (21% lulie si 23 % Octombrie). La polul opus, cea mai mica ratd a fost semnalata
la molidisul pur (aproximativ 5% in Iulie 13% in Octombrie). In cadrul clasei de marime lemn
mijlociu (d=2.1-4.0) (figura 3 b), fagul a prezentat cele mai ridicate rate de descompunere, in
timp ce molidul cele mai mici. Ratele de descompunere ale lemnului de la cea mai mare
categorie de grosime (d=4.1-5.6 cm) (figura 3 c) au fost similare pentru toate cele 8 variante
structurate (cu variatii intre 5 si 10%). In ceea ce priveste influenta managementului asupra
gradelor de descompunere, prin comparatia ratelor de descompunere a celor 3 specii din
padurea parcursa cu interventii silviculturale cu ratele Inregistrate in pddurea virgina, s-au gasit
diferente semnificative doar la specia brad si clasa de lemn foarte subtire (o ratd mai mare in
padurea neparcursa). Din punct de vedere al influentei amestecului asupra descompunerii, fagul
a prezentat in arboretul pur rate de descompunere aproape duble comparativ cu padurea de
amestec atit pentru clasa de diametre mici, precum si pentru clasa de dimensiuni mijlocii.

Conform modelului carbonului din sol si de descompunere a litierei (Yassol5) litiera se
descompune in 4 grupuri de componente, asa-numitul AWEN(A-substante hidrosolubile in
acid, W-substante solubile in apa, E-solventi (ex. etanol sau diclorometan), W-substante care
nu sunt nici solubile nici hidrosolubile). Am proiectat ca un total de 144 de probe (3 specii x 2
tipuri de material —litiera si lemn de dimensiuni mici x 3 perioade de recoltare — la inceput de
experiment —Noiembrie 207, la mijloc de experiment Noiembrie 2018 si la sfarsit de proiect
Noiembrie 2019 x 8 replicatii) sa fie trimise in Finlanda, la partenerul finlandez, care pe baza
protocolului aferent sa fie determinate aceste 4 grupuri de componente. Au fost obtinute
rezultatele analizelor primului set de date si se afla in lucru in laboratorul finlandez setul al
doilea corespunzator momentului 2 (noiembrie 2018), urmand ca in cel mai scurt timp sa fie
trimisa si a treia runda de probe la doi ani dupa inceperea experimentului.

Conform acestor prime analize obtinute, componenta A (substante hidrosolubile in acid) este
semnificativ mai mare la lemnul de fag comparativ cu cel de brad si molid, in timp ce
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componentele E si N sunt semnificativ mai mici la lemnul de fag comparativ cu cel de molid
si brad (intre conifere neexistand diferente semnificative). Componenta W desi este mai redusa
in lemnul de fag decat in lemnul rasinoaselor, diferentele intre cele trei specii nu sunt
semnificative (Anexa I, figura 4). In ceea ce priveste procentul de participare al fiecarei
componente AWEN in cazul descompunerii frunzelor/acelor (Anexa I, figura 5), se poate
observa cum componentele N si A, la frunzele de fag sunt semnificativ mai mari decat cele ale
rasinoaselor, in timp ce componenta W prezintd un comportament opus (valoarea minima fiind
intalnita la fag). Referitor la componenta E, bradul prezinta valoarea cea mai indicatd si molidul
pe cea mai scazuta, fagul posedand o valoare intermediara (totusi cu diferente semnificative
ntre toate cele 3 specii).

In ceea ce priveste relatia dintre componentele lemnului de mici dimensiuni si diametrul
pieselor esantionate putem concluziona urmatoarele:

-la specia fag nu a existat nici o legatura semnificativa intre variatia diametrului si cele 4
componente structurale.

-la ambele specii de rasinoase s-a identificat o corelatie pozitiva intre componenta A si
diametru (creste procentul componentei A cu cresterea diametrului), precum si o corelatie
negativa intre componenta W si diametru (pe masurd ce creste diametrul scade proportia
componentei W in compozitia /structura lemnului de brad si molid).

In plus, la mijlocul anului 2019 au fost descircate informatiile inregistrate in ultimele 12 lunii
catre senzorii de temperaturd din aer si din sol, in figura 6 din Anexa | fiind redate spre
exemplificare locatia de molidis pur parcurs cu lucrari silvotehnice. Aceste date climatice vor
fi folosite in final la parametrizarea si validarea modelului Yasso 15 pentru zonele test ale
proiectului.

b) Calibrarea si validarea stocurilor de C din sol cu CBM-CFS3 si Yasso15 si
validarea cu masuratorile din Inventarul Forestier National (V. Blujdea, Gh.
Marin)

Progresul principal in anul 2019 1l reprezinta parametrizarea, calibrarea si validarea modelelor
de simulare a stocurilor de C din solurile forestiere la nivel local, respectiv asociate combinatiei
celor 10 tipuri de padure cu 5 climate (definite de parametrii climatici) angajat prin pachetul
“Combinarea masuratorilor de carbon din sol cu modelarea pentru inventariere eficienta din
punct de vedere al costurilor (WP4)”. Este un progres pentru ca in general, modelele sunt
creditate ca furnizori de estimari precise la nivel agregat la scara mare (i.e. national), dar nu si
la nivel local (Didion et al., 2015).

Pentru simularea si validarea dinamicii stocului de masa organica moarta/ carbon asociate
solului mineral in 10 tipuri de padure combinat cu 5 tipuri de climate se au in vedere
urmatoarele depozite de carbon: lemn mort (dead wood - DW), litiera (LT- Litter) si materie
organica specifica solului (soil organic carbon - SOC) C din sol (Anexa 2c). Urmatorii pasi
sunt efectuati:



a) parametrizarea CBM-CFS3 cu date din IFN2, respectiv Procesarea cu metode statistice
state-of-the-art de curbe actualizate ale cresterii nete curente anuale si ale volumului de
lemn masurate de Inventarul Forestier National al Romaniei (Sprijin acordat de Oregon
State University, Corvallis, USA) rata mortalitatii anuale si input de biomasa potrivit
Anexa 1c;

b) calibrarea CBM-CFS3 cu stocurile de lemn mort raportate de IFN1 si IFN2;

c) alimentarea Yassol5 cu input de biomasa armonizat ca output din CBM-CFS;

d) validarea cu valorile stocurilor de C masurate in IFN (2010) cumulate pentru cele trei
depozite (lemn mort, litierd si sol mineral).

Modelul de descompunere asociat materiei organice moarte incorporat de CBM-CFS3 include
noua depozite de C (vezi figura urmatoare) care sunt grupate in coloana ,,GPG pool” in cele
trei depozite de carbon: litiera, lemn mort si sol mineral.

Table 2 - Gorrespondence between pools in the Carbon Budget Model of the Canadian Forest Sector 3—wersion 1.1
(CBEM-CFS3) and recommended pools by the Intergovernmental Panel on Climate Change Good Practice Guidance (GPG)

(IPCC, 2003). SW =softwood, HW =hardwood, DOM =dead organic matter.

CBM-CFS3 pool Description GPG pool
Merchantable + bark (SW or HW) Live stemwood of merchantable size® plus bark Aboveground biomass
Other wood + bark (SW or HW) Live branches, stumps and small trees including Aboveground biomass
bark
Foliage (SW or HW) Live foliage Aboveground biomass
Fine roots (SW or HW) Live roots, approximately <5 mm diameter Belowground biomass
Coarse Toots (SW or HW) Live roots, approximately =5 mm diameter Belowground biomass
Snag stems DOM (SW or HW) Dead standing stemwood of merchantable size Dead wood
including bark
Snag branches DOM (SW or HW) Dead branches, stumps and small trees Dead wood
including bark
Medium DOM Coarse woody debris on the ground Dead wood
Aboveground fast DOM Fine and small woody debris plus dead coarse Litter

roots in the forest floor, approximately =5 and
<75 mm diameter

Aboveground wery fast DOM The L horizon® comprised of foliar litter plus Litter
dead fine roots, approximately <5 mm diameter

Aboveground slow DOM F, H and O horizons®? Litter

Belowground fast DOM Dead coarse roots in the mineral soil, Dead wood
approximately =5 diameter

Belowground very fast DOM Dead fine roots in the mineral soil, Soil organic matter
approximately <5 mm diameter

Belowground slow DOM Humified organic matter in the mineral sail Soil organic matter

Modelul si baza de date Yassol5 sunt adecvate pentru generarea de estimari imbunatatite
pentru carbonul din soluri (Liski et al., 2005, Tuomi et al., 2011, Jarvenpéé et al., 2017).
Actuala baza de date cu care este parametrizat Yassol5 include deja aproximativ 20000 de
masuratori legate de sol din diferite parti ale lumii (stocurile de carbon din sol si schimbarea
lor, descompunerea litierei, etc.). Rezultatele sunt prezentate in anexa 2c. In general se constata
ca ambele modele supraestimeaza stocul de C din sol, iar CBM simuleaza sistematic valori ale
stocului mai mari decat Yassol5. Urmeaza a fi initiate procedurile de QA/QC pentru bazele de
date utilizate, si de calibrare si armonizare a parametrilor de descompunere utilizati de celle
doua modele.

Prin sprijinul acordat de Oregon State University, Corvallis, USA s-au realizat de curbe
actualizate de crestere netd curentd anuala si actualizarea volumului de lemn din paduri.
Curbele obtinute reprezinta elementele de baza in realizarea scenariilor de reduceri de emisii
de gaze cu efect de sera asociate gospodaririi padurii prin utilizare de modele empirice
prevazuta in sarcinile 3, 5 si 6 din proiect. Rezultatele pre-analizei validitatii la scara



locala/regionala si parte din procesarea statistica a modelarii cresterii arboretelor si stocurilor
de volum pe picior sunt prezentate in Anexa 7a,7b,7c si 7d. Acestea au constat in: au fost
efectuate cercetari folosind informatiile de pe carotele de crestere recoltate pentru principalele
9 specii forestiere din Romania, respectiv fag, molid, gorun, brad, cer, garnita, stejar, carpen si
salcam, care acopera impreuna aproximativ 60% din padurile tarii. Modele de crestere folosite
au diferit de la o specie forestiera la alta. Au fost folosite coduri SAS si s-au obtinut corelatii
de 84% intre parametrii luati in considerare, pentru 8 din cele 9 specii studiate, la nivel de tara.
Pentru una dintre specii (fag) trebuie continuate cercetarile, deoarece corelatia obtinuta a fost
mai slaba. Deoarece s-a studiat si variabilitatea spatiald a celor 9 specii, pentru 5 dintre ele s-
au elaborat modele de crestere, cu acelasi grad de corelatie, si la nivel de ecoregiuni omogene
din punct de vedere al conditiilor naturale de crestere.

c) Estimarea dinamicii stocului de carbon folosind modelul Yasso 15, simulare si
parametrizare locala in conditii de schimbare a folosintei terenului la/de la
padure (M. Miclaus).

Pentru a intelege contributia schimbarii folosintei terenului la bilantul emisiilor gazelor cu efect
de sera (GES) —1n special a dioxidului de carbon (CO3) , asociate conversiilor simetrice la si
de la terenurile forestiere de la si la alte folosinte, este necesara implementarea unor metode
robuste care sa surprinda, pe de o parte, absorbtia de CO. extrem de lenta Tn cazul conversiilor
de la alte folosinte la padure (e.g. impaduriri ) si pe de altd parte emisiile accelerate de (CO>)

aferente conversiilor de la padure la alte folosinte ( ex: despadurir).

Cea mai noua versiune a modelului Yasso, Yasso 15, care descrie ciclul C organic in sol
(Jarvenpaa et al 2015), reprezintd o Tmbunatatire a unei versiuni anterioare Yasso (Liski et al.
2005) precum si a Yasso07 (Tuomi si al. 2009, Tuomi et al. 2011b). Acesta in plus cuantificasi
respiratia heterotrofica a solului. Aplicatiile sale se extend la simularea dinamicii stocurilor de
C din schimbarea folosintei terenului, gestionarea ecosistemelor, schimbarile climatice.
Sintaxa modelui Yassol5 este relativ simpla, datele de intrare necesita doar informatii cu

privire la cantitatea de C plus parametrii climatici (temperature si precipitatii).

Versiunea anterioard Yasso07 a fost bazatd pe un numar substantial mai mare de masuratori si
metode matematice mai avansate decat versiunea Yasso precedenta, estimarile privind

incertitudinea reprezentand partea fixa a rezultatelor din Yasso07.

Versiunea curenta Yassol5 utilizeaza un set de date mai diversificate, punandu-se mai mult
accent pe ipotezele de modelare si unele detalii matematice care au condus la o calitate mai
buna a modelarii, respectiv o mai buna reprezentare a metodelor si proceselor ecologice

fundamentale. In plus, estimarile de incertitudine sunt parte importantd a acestei versiuni,



facilitdnd si simulari ce pot implica transferuri ale carbonului organic intre diferite tipuri de

folosinte a terenului.

Definitii: Tn acest experiment s-au ales trei suprafete de proba (SP) care s reflecte secventa

conversiei la padure de la pajiste.

Design experimental: Tipul de padure Gospodarita, conform planului amenajistic SP-urile se
pozitioneaza in U.A. 7A , a Ocolului Padurile Sincii (vezi figura urmatoare cu locatia

suprafetelor de proba).

Distributia altitudinald: trei suprafete de monitorizare corespunzand altitudinii la care se
gaseste tipul de padure cu compozitia, Fag si Carpen ( cod FA, CA, varsta 80 ani) 600-700 m,
tranzitia (amestec FA, CA, varsta 21-21 ani), urmata de pajiste.

Recoltare probe sol si preprocesare: Pentru recoltarea probelor de sol din fiecare secventa s-a
folosit 0 sonda tip Edelman si Riverside/ Eijelkamp (vezi figura), s-au efectuat cate 5 repetitii
din 10 Tn 10 cm, din care s-au prelevat probe pana la adancimea de aproximativ 1m, locatia

fiecarei repetitii fiind inregistrata in GPS, totatul probelor fiind de 82.

Ulterior au fost aduse in laborator in pungi de plastic etichetate corespunzator, urmand a fi
procesate pentru determinarea continutului de C organic, azot N, determinarea texturii, i a

densitatii aparente, rezultatele fiind necesare pentru parametrizarea modelului.



Caracteristicile suprafetei de proba culese sunt : Locatia, Secventa, Specia, Tipul de sol,

Textura, Densitate aparenta, C/N.

d) Analiza incertitudinii metodelor utilizate pentru detectarea schimbarii folosintei
terenului prin metode diferite (M. Miclaus, V. Blujdea)

Acesta raspunde obligatiilor asociate sarcinilor din pachetul 3 si 5. Imbunatatirea consistentei
metodelor de estimare a schimbarii stocurilor de carbon cu suprafata terenurilor este una din
marile provocari legate de implemetaea inventarelor de gaze cu efect de sera si a reducerior de
emisii asociate obligatiilor internationale (Protocolul de la Kyoto, Acordul de la Pari/legislatia
uniunii euroepene). Activitatea face parte din cadrul WP5. Compararea a trei metode utilizate
in diverse sisteme de raportare este descrisa in versiunea avansata de articol inclusa in Anexa
3.

e) Studiu privind specificitatea modelelor alometrice (I. Dutca, V. Blujdea)

Acesta raspunde obligatiilor asociate sarcinii 5.2. Este general recunoscut ca modelele
alometrice necesare pentru estimarea biomasei in paduri sunt specifice zonei din care au fost
esantionati arborii. Asta pentru ca forma arborilor este influentata de genotip dar si de factorii
de mediu cum ar fi solul, clima dar si competitia dintre arbori. Plecand de la premisa ca aceste
caracteristici au o variabilitate spatiald, concluzionam ca si alometria arborilor are o
variabilitate spatiald. Folosind modele ierarhice cu interceptul variabil, am putut arata cat de
mult sunt afectate aceste modele de variabilitatea spatiala. Coeficientul de corelatie intraclasa
este des folosit in sociologie pentru a arata proportia variantei modelului, cauzata de diferentele
dintre grupuri. In mod similar, noi am aratat ca diferentele dintre plantatiile tinere de molid
(Picea abies) in Romania produc proportii foarte mari din varianta totala a modelului alometric.
Aceasta proportie a variat intre 33 si 86% din varianta totala a modelului, in functie de variabila
independenta folosita si componenta arborilor estimata. Am mai aratat ca, folosind diametrul
ca variabila independenta in model efectele produse de gruparea arborilor esantionati in
plantatii este mai mic decat atunci cand folosim indltimea arborilor. Atunci cand sunt folosite
ambele variabile (diametrul si Indltimea) este mai bine sa fie folosita o variabila combinata
(D2H) deoarece efectul plantatiei asupra modelului este mai mic. Dintre componentele
arborilor, biomasa fusului are o specificitate mai mare decat biomasa frunzelor sau ramurilor.

Rezultatele obtinute sunt foarte importante pentru domeniul estimarii carbonului in paduri,
pentru ca in acest fel se poate decide daca modelele elaborate pentru un arboret pot fi folosite
si in alte arborete. Desi se vorbeste foarte des despre specificitatea modelelor alometrice, acest
studiu este primul studiu care arata intr-un mod cantitativ ca specificitatea modelelor
alometrice are foarte ridicata. Acest studiu a fost publicat in revista Biomass & Bioenergy nr.
116 din Septembrie 2018. Varianta publicata a articolului este disponibila la:
https://www.sciencedirect.com/science/article/pii/S0961953418301259?via%3Dihub or
https://doi.org/10.1016/j.biombioe.2018.05.013.



https://www.sciencedirect.com/science/article/pii/S0961953418301259?via%3Dihub

f) Dezvoltarea unui indicator pentru justificarea deciziei de a combina variabilele
in modelele alometrice (I. Dutca, V. Blujdea)

Modele alometrice folosesc variabile usor de masurat (e.g. diametrul D si/sau inaltimea H)
pentru a estima caracteristici greu de masurat ale arborilor (e.g. biomasa). Insi diametrul si
inaltimea arborilor sunt caracteristici care sunt corelate, deoarece arborii cu diametrul mai
mare au de regula si o Indltime mai mare. Pentru a limita efectele coliniarititii dintre variabile
adesea se foloseste o variabila combinata D*H, plecand de la premisa ca biomasa supraterana
este proportionala cu volumul unui cilindru cu diametrul=D si inaltimea=H. Insa variabila
combinata constrange modelul sa produca un raport fix al parametrilor pentru D si H,
respectiv 2.0. Asadar, ipoteza studiului este ca pierderea de acuratete a modelului este in
functie de raportul Q (raportul dintre parametrul lui D si parametrul lui H). Cu cat raportul Q
este mai diferit de 2.0 cu atat pierderea de acuratete atunci cand folosesc D?H este mai mare.
Folosind cinci seturi de date cu observatii de biomasa am confirmat ipoteza studiului.

Studiul a fost publicat in revista Forestry (online first) https://doi.org/10.1093/forestry/cpz041

g) Studiu privind efectul covariantei neliniare (intre parametrii modelelor
alometrice) si a combinarii variabilelor independente in modelele alometrice
asupra estimarilor de biomasa la nivel de suprafata intinsa (I. Dutca, V.
Blujdea).

Datorita faptului ca modele alometrice sunt modele neliniare, atunci cAnd modele neliniare
sunt folosite in locul celor liniare aplicate datelor logaritmate, covariantele dintre parametrii
modelelor alometrice sunt curbate (nu sunt liniare). Covariantele modelelor alometrice sunt
necesare pentru a putea propaga incertitudinea din modelele alometrice in incertitudinea
estimdrilor de biomasa la nivel de suprafatd intinsa (e.g. in suprafete de proba gen IFN).
Uzual, pentru estimarea covariantei parametrilor modelelor alometrice sunt folosite
aproximari bazate pe serii Taylor, care insd omite neliniaritatea dintre parametri. Folosind un
set de date de biomasa pentru specia molid, precum si suprafetele de proba din IFN
(Romania) unde toti arborii sunt din specia molid (243 suprafete) am aplicat o metoda Monte-
Carlo de propagare a erorilor din modelele alometrice dar si din diferentele dintre suprafete,
in estimarea biomasei la nivel de suprafatd intinsa (i.e. tone/ha). In cadrul acestei metode,
covariantele parametrilor au fost estimate folosind doua metode: serii Taylor si Bootstrap
aplicat valorilor reziduale.

Pe de alta parte, combinarea variabilelor in modelele alomterice, desi am aratat ca pot
produce o pierdere a acuratetei estimarilor, aceasta pierdere depinde de raportul Q (Q =
raportul parametrilor pentru D si H intr-un model cu variabile separate). Deci daca este
folosita o variabila combinata D?H in loc de D*H, acesta pierdere de acuratete nu mai exista.
Insi combinarea variabilelor poate avea efecte benefice, deoarece numarul covariantelor de
estimat se reduce de la 3 (in cazul modelelor bazate de doua variabile) la 1 (pentru modelul
combinat).

O varianta de lucru a acestui articol este prezentata in Anexa 4.


https://doi.org/10.1093/forestry/cpz041

h) Studiu privind impactul caracteristicelor esantionului in modelele alometrice
asupra acuratetei si preciziei estimarilor de biomasa (I. Dutca)

Este bine stiut ca acuratetea si precizia estimarilor de biomasa depind Intr-o oarecare masura
de modelele alometrice pentru estimarea biomasei la nivel de individ. Desi este cunoscut
faptul ca variabilitatea intrinseca a relatiei intre biomasa si predictor(i) precum si marimea
esantionului (numarul de observatii) influenteaza acuratetea si precizia (acuratetea a fost
definita ca diferenta dintre valoarea estimata si valoarea reala), acest studiu aduce in discutie
si alte caracteristici ale esantionului cum ar fi méarimea intervalului de diametre al
esantionului, pozitia acestui interval (data de valoarea de start a intervalului) si distributia
diametrelor in esantion. Folosind simuldri Monte-Carlo am generat seturi de date cu diferite
caracteristici. Mai departe, cu aceste date am elaborat modele alometrice care au fost folosite
pentru a estima biomasa unei suprafete de proba. Concluziile studiului au fost:

e Variabilitatea relatiei Biomasa-Diametru a fost cel mai important factor care
influenteaza acuratetea si precizia estimarilor de biomasa;

e Mairimea esantionului (numarul de observatii) desi a influentat semnificativ acuratetea
estimarii a avut un efect nesemnificativ asupra preciziei estimarii;

e Distributia diametrelor in esantion a avut un efect similar marimii esantionului; a
influentat semnificativ acuratetea estimarii, insd nesemnificativ precizia estimarii;

¢ Am demonstrat ca arborii mici aduc o cantitate mai mare de informatie in modelul
alometric, deci modelele alometrice care includ arbori mici vor avea o ajustare mai
buna (o valoare a coeficientului de determinare R* mai mare) si valori mai mici ale
erorilor standard ale parametrilor. Acest lucru este datorita faptului ca varianta in
modele alometrice (care sunt neliniare) nu este constanta si creste cu diameterul
(=heteroscedasticitate). Insa in modele alometrice heteroscedasticitatea este controlata
prin ajustarea observatiilor cu un factor care se calculeaza ca inversa variantei. Cum
varianta este mica la arborii mici, acest factor este mai mare la arborii mici, deci
cantitatea de informatie (sau importanta) arborilor mici in model este mai mare. Cu
toate acestea, desi modelul in care sunt inclusi arborii mici este mai bun (din punct de
vedere al coeficientului de determinare), impactul asupra acuratetei si preciziei
estimdrilor de biomasa este nesemnificativ.

e Am ardtat ca esantionand un numar constant de arbori pentru fiecare categorie de
diametre rezulta modele care produc estimari cu acuratete si precizie mai ridicata.

e De asemenea, desi R? este frecvent folosit pentru alegerea modelelor (sub ipoteza ca
un model cu R? mai mare este mai bun) am aritat ca R? este dependent de marimea
intervalului de diametre folosit pentru elaborarea modelului iar acuratetea si precizia
modelelor nu depind de intervalul de diametre folosit. Asadar, am aratat ca precizia si
acuratetea estimirilor de biomasa nu depind de valoarea R? a modelului.

Manuscrisul este prezentat in Anexa 5.

i) Studiu asupra variabilitatii generate de diferentele dintre specii si de diferentele
dintre locatii in modelele alometrice (I. Dutca)
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Modele alometrice sunt vitale pentru estimarile de biomasa si pentru buna implementare a
programelor de reduceri de emisii din paduri. Aceste modele folosesc variabile independente
usor de masurat (e.g. diametrul de baza, inaltimea arborilor) pentru a estima biomasa
arborilor in picioare. Insa ele au doua mari limitari: (1) faptul ca modele sunt specifice speciei
si locatiei si (2) faptul ca masuratorile de biomasa pentru elaborarea de noi modele sunt
dificile si implica logistica si costuri mari. Cunoasterea nivelului de specificitate in raport cu
specia si in raport cu locatia a acestor modele nu este bine cunoscuta. De aceea scopul acestui
studiu a fost de a arata gradul de specificitate al modelelor in raport cu specia si locatia,
folosind doua seturi de date din Eurasia si Canada. Aplicand un model ierarhic ANOVA
valorilor reziduale ale modelelor alometrice, am separat varianta totala in (i) varianta
explicata de diferentele dintre specii, (i1) varianta explicata de diferentele dintre locatii si (ii)
varianta reziduala. Mai departe am folosit proportia variantei explicata de fiecare din cele
doua nivele (specie si locatie) pentru a evalua cat de specifice sunt modele alometrice speciei
respectiv locatiei. Pentru determinarea erorilor standard ale acestor proportii am aplicat o
analiza Bootstrap. Rezultatele au ardtat ca specia explica o proportie a variantei totale mult
mai mare decat locatia. Proportia variantei explicate de diferentele dintre specii a fost de
42.56% (SE = 6.10%) pentru Eurasia si 47.54% (SE=6.07%) pentru Canada, pe cind
proportia explicata de diferentele dintre locatii a fost de 20.08% (SE=3.35%) pentru Eurasia
si 8.27% (SE=1.38%) pentru Canada. Asadar diferentele dintre specii genereaza o
variabilitate mult mai mare in modele alometrice in comparatie cu diferentele dintre locatii.
Folosind diametrul si inaltimea arborilor ca variabile independente in modelul apometric
(comparativ cu situatia in care doar diametrul este folosit ca variabila independenta), a
condus la o scadere a proportiei variantei explicata de diferentele dintre locatii de cca 24-
44%, pe cand proportia variantei explicata de diferentele dintre specii a rdimas neschimbata.

Aceste informatii sunt extrem de valoroase deoarece ele arata cat de mari pot fi diferentele
dintre modelele alometrice ale diferitelor specii, precum si cat de mari pot fi diferentele intre
modelele alometrice specifice locatiilor. De asemenea, mai indica riscul de erori sistematice
atunci cand modele specifice unei specii este folosit pentru o alta specie si cat de mari sunt
riscurile atunci cand un model dezvoltat pentru o locatie este folosit intr-o alta locatie.
Deoarece proportia variantei explicata de diferentele dintre specii a fost mai mare decét cea
explicata de diferentele dintre locatii, riscul de erori sistematice este mai mare cand modele
sunt mutate de la o specie la alta decat atunci cand ele sunt mutate de la o locatie la alta. De
asemenea, am aratat ca, deoarece variatia conditiilor climatice este mai mare in setul de date
din Eurasia, proportia variantei explicata de diferentele dintre locatii este mai mare decat
pentru setul de date din Canada.

Studiul a fost publicat in revista Forests 2019, 10(11), 976;
https://doi.org/10.3390/f10110976

j) Calibrarea modelului PREBAS pentru Romania (I. Dutca, V. Blujdea)

Modelul PREBAS este un model care simuleaza dinamica padurii la nivel de arboret (sau
strat din arboret) si a luat nastere prin combinarea modelelor CROBAS si PRELES.
CROBAS este un model pentru estimarea cresterii individuale a arborilor. Cresterea se
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bazeaza pe acumularea si alocarea carbonului, asadar cresterea este egala cu productia neta.

PRELES este un model folosit pentru estimarea capacitatii de fotosinteza a unei paduri, input
care este esential in CROBAS. Fotosinteza bruta este calculata ca produs intre masa frunzelor
si rata specifica a fotosintezei.

Pentru calibrarea modelului PREBAS am folosit datele IFN referitoare la caracteristicile
arboirlor masurati, dar si o serie de date climatice specifice fiecarei suprafete de proba IFN.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

nyears = 100
siteInfo <- read.csv("inputs/siteInfo.csv", header
thinning <- read.csv("inputs/Thinning.csv", header
initvar <- read.csv("inputs/initvar.csv",header =
obsData <- read.csv("inputs/obsData.csv",header =

weather <- read.csv("inputs/weather.csv",header =
PAR = c(weather$PAR,weather$PAR,weather$PAR)
TAir = c(weather$TAir,weather$TAir,weather$TAir)

=T)

=T)

T, row.names = 1)
T)

™

Precip = c(weatherS$pPrecip,weather$Precip,weather$Precip)

VPD = c(weather$vPD,weather$vPD,weather$vpPD)
C02 = c(weather$co2,weather$co2,weather$co2)
DOY = c(weather$Doy,weather$Doy,weather$poy)

PREBASOUt <- prebas(
nyears=nyears,
pPCROBAS = pCROB,
pPPRELES = pPREL,
siteInfo = sitelInfo,
thinning = thinning,

PAR=PAR,TA1r=TAir,VPD=VPD,Precip=Precip,C02=C02,

PO=NA,
initvar = as.matrix(initvar),
defaultThin = 0.,

clcut = 1.,
inDclct = NA,
inAclct = NA)

Figura 1. Un exemplu din scriptul R al modelului PREBAS, cu functia ,,prebas”.
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Diametrul de baza Inaltimea

Diametrul (cm)
5 10 15 20 25
1 1 1 1 1
Inaltimea (m)
10 20 30 40
1 1 1 1

0 10 20 30 40 0 10 20 30 40
Anul Anul
Suprafata de baza Biomasa trunchiului

Suprafata de baza (m2/ha)
2 4 6 8 10
1 1 1 1 1
Biomasa trunchi (kg/ha)
0 10000 20000 30000
1 1 1

o = -
T T T T T | T T T T
0 10 20 30 40 0 10 20 30 40
Anul Anul
Productia primara neta Cresterea bruta

Productia primara neta (m2/an)
100 200 300 400
1 1 1 1
Crestere bruta (m3/an/ha)
2 4 6 8 10
1 1 1 1 1

Anul Anul

Figura 2. Un exemplu de rezultat obtinut pentru o perioada de simulare de 40 de ani

Mai multe detalii despre calibrarea modelului PREBAS, in Anexa 6.

[
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k) Administrarea bazei de date a proiectului

- procesarea statistica se face cu prioritate in R (open source): https://cran.r-
project.org/bin/windows/base/

- modul de stocare si actualizare a bazei de date: fisiere Excel pentru EFISCEN si Microsoft
Access pentru CBM-CFS.

I) Sprijin activitati incluse in alte pachete de lucru din FORCLIMIT

- informare continua cu privire la regulile de contabilizare a reducerilor de emisii din
sectorul  folosintei  terenurilor incluse in  Pachetul energie clima 2030
(https://ec.europa.eu/clima/policies/strategies/2030_en), in sprijinul Pachetelor de lucru 1 si 2
ale FORCLIMIT.

3. Managementul proiectului

Toate sarcinile asumate prin contract sunt antamate si in stadiu corespunzator ultimei jumatati
a perioadei de implementare a proiectului. Cele mai dificile aspecte, respectiv adaptarea
bazelor de date si definitivarea scripturilor pentru pre-procesare si armonizare date sunt
rezolvate pentru EFISCEN (varianta clasica) si CBM-CFS3, si in ce priveste integrarea CBM-
CFS3 cu Yassol5. Calibrarea modelul Yassol5 pentru Romania este incetinita de ritmul
experimentului de descompunere (Anexa 1) si de analiza bio-chimica (de Institutul
Meteorologic partener din Finlanda), insa rezultatele sunt conforme cu teoria, si reprezinta
primele rezulate de acest fel din Europa de est.

Sunt organizate intalniri periodice pentru o zi de lucru in comun, cel putin odata la 3
saptamani. Calendarul de colectare probe de sol (pentru validarea modelului) si
descompunere litiera este mentinut cu strictete.

4. Vizibilitate nationala si internationala a proiectului FORCLIMIT

Referitor la comunicarea excelenti avuti cu partenerii europeni implicati in
proiect amintim

- includerea lui V. Blujdea ca expert Type A (independent, din partea com,unitatii
stiintifice) in  LULUCF Expert Group of the European Comision
(https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDet
ail&grouplD=3638&NewSearch=1&NewSearch=1).

Brasov, 4.12.2019 Dr. ing. Viorel Blujdea
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Anexa 1. Decomposition of needle/leaf and small wood litter from European beech, Norway
spruce and Silver fir: influence of mixture, climate (temperature x altitude) and forest
management

1.Introduction

Litter decomposition is a fundamental process of forest ecosystems for the carbon and nutrients cycles
(dead organic matter is transfered from the above-ground part of trees to the forest floor, where
under the action of microorganisms and soil fauna is decomposed gradually depending on climate
factors (temperature, precipitation) (Gholz et al. 2000), substrate availability/soil properties
(Vesterdal 1999) and litter quality (Cornwell et al. 2008). In a meta-analysis, grouping data for 818
species from 66 decomposition experiments on six continents, Cornwell et al. (2008) found that plant
functional traits as litter quality is more important than climate factors affecting litter decomposition
rate (the species driven differences control predominantly the litter decomposition rate worldwidely).

2.Material and methods
Site

The study site is located in Transilvanian side of Southern Carpathians (Fagaras Mountains), Padurile
Sincii forest district.

The study was carried out on European beech (Fagus sylvatica) leaves, and Norway spruce (Picea abies)
and Silver fir (Abies alba) needle litter, but also on small wood litter of all three species. In October
2017, fresh fallen brown leaves were collected beneath several randomly distributed trees, while the
needles were collected from branches cut from several trees selected at random. In November 2017,
small wood pieces were collected from branches cut from trees recently harvested during the thinning
interventions. Both litter types (leaves/needles and small wood) were stored 2 weeks in laboratory at
air temperature. The litterbags were made of ??nets (20 x 30 cm; 1 mm mesh size? for beech and 10
x 10 cm; ..mm mesh size for needles) and filled with 10-20 g leaves and 5-15 g needles, respectively
and labelled properly. In 6th of November 2017, on each of the four study sites 80 litterbags per
species (8 replicates of 10 samplings campaigns over three years) were placed on the soil. Subsequent
samples were taken according to a preplanned schedule (every month starting with 24th of April till
24 October). We dried a first set of bags at 80 C for five days and weighed and calculated for each
species an average correction factor as ratio between oven dry mass and air-dry mass. We applied this
correction factor to all litterbags in order to obtain the initial oven-dry mass of each leaf amount of
every litterbag (we multiplied air-dry mass of all leaf bags for humidity by the average correction
factor).

Data analysis
The relationship of the mass loss of leaves and needles and decomposition time is often modelled by
a negative exponential decay model:
Mt=MO x exp(-k x t),
where:
-Mt is the mass at time t,
-M0 is the initial mass (mass at time 0),
-t is time in months
-k is the exponential decay coefficient or decomposition rate.
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In our case, we used mass remaining as % from initial mass account (consequently, M0 = 100).

3.Results

3.1. Leaf/needle litter decomposition

100

ol ,‘ .‘H i %J[

g Ty =1
=
2 60} il! - L,
2 Bl
L it
© T ]
E ESII - W] i
5 401 = ste  siver fir managed Al
;. -4 site  beech pure managed
30t ~4- site beech mixed managed I

20 | 4 site spruce mixed managed

32 site spruce pure managed

10 b % stte beech mixed virgin
—4= site spruce mixed virgin

0 -4 - site, silver fir virgin i H i
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May18 July1®@ Septemberi€ Apri19 July1S

Fig.1. Leaf/needle mass remaining (as % from initial amount) for all investigated variants after each
bags collection.

During the first year of experiment the mass loss
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Fig.2. Litter mass remaining (as % from initial amount) modelled as a function of decomposition time

(months) (y=100 x exp(-k x)) for each studied variant (a-beech mixed managed, b-beech mixed virgin,

c-silver fir mixed managed, d-silver fir mixed virgin, e-spruce mixed managed, f-spruce mixed virgin,

g-beech pure managed, h-spruce pure managed).

Table 1. Regression analysis (%mass remaining=100 x exp(-k x time)).

K | R 100
Beech mixed 0,0324 | 0,000 | 0,74
managed
Beech mixed 0,0237 | 0,000 | 0,68 g 30
virgin @
Silver fir mixed | 0,0516 0,000 | 0,71 5
managed ¢ 60
Silver fir mixed | 0,0535 | 0,000 | 0,72 £
virgin ©
Norway spruce | 0,0366 | 0,000 | 0,67 § 40
mixed managed %
Norway spruce | 0,0459 | 0,000 | 0,85 é 20
mixed virgin
Norway spruce | 0,0428 0,000 | 0,74
pure managed obo v v 0
Beech pure 0,0237 | 0,000 | 0,77 0 4 8 12 16 20 24 28 32 36 40 44 48
managed 2 6 10 14 18 22 26 30 34 38 42 46
Months
3.2. Small wood litter decomposition
La) [ b)
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Fig.3. Small wood litter mass loss (as % from initial amount) for all forest/species variants (a) wood
with d=0.1-2 cm, b) d=2.1-4.0 cm, c¢) d=4.1-5.6 cm

3.3. Species-specific preliminary AWEN values (intially time)

3.3.1. AWEN values for small wood
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Fig. 4. Species specific variation of AWEN values of small wood.

3.3.2. AWEN values for leaves/needles
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Include condition: species="beech wood"
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Include condition: species="spruce wood”
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Include condition: species="silver fir wood"
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Anexa 2. Informatii privind armonizarea bazelor de date in vederea validarii reciproce
a medelelor CBM-CFS si EFISCEN

Anexa 2a. Criteriile de clasificare si parametrii agregati regional pentru baza de date
nationala din Inventarul Forestier National

Criterii Specificatii
Tip de padure/ Rasinoase (OC), Molid (PA), Brad (AA), Predom rasinoase
specii (PredCon), Amestecuri (ConBroad), Predom foioase (PredCon),

Foioase (OB), Fag (FS), Cvercinee (QR), Salcam(RP) — pentru
tipurile de padure ingrosate parametrii modelului sunt actualizati
prin ajustare la nivel de regional (clima si regiune)

Clase de varsta

1-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91-
100, 101-110, 111-120, 121-130, 131-140, 141-150, 151-160, >160,
Unevenaged

Regiuni
administrative
(NUTS-2)

RO11, RO12, RO21, RO22, RO31, RO32, RO41, RO42

Volum pe picior

Volume annual, m3 y-1

Recolta de masa

Volume annual, m3 y-1

esantionare (in %)
pentru toti
parametrii de mai
sus

lemnoasa

Suprafata Area, ha

Creserea neta anuala | Net annual growth, m3 y-1 ha-1
Eroarea de Estimation error, %

Parametrii ecuatiilor utilizati la modelare

V=a*eP™A*(1-eP"M)ACD ynde

V- volumul comercial,
A — clasa de varsta de 10 ani,
a,b,c — parametrii ecuatiei specifici ficarei tip de padure

Parametrii ecuatiei pentru estimarea volumului lemnului comercial pe picior

Tip
de
padu ConBro PredBro | PredCo
re ad AA FS 0B oC PA ad n QR RP
136381.75 | 2019.8 | 976.80 | 3787.4971 | 2777.8 | 3696.27 | 2841.8 1607.5 | 3541.6
a 2291.41 53 21 87 76 76 5 94 77 a7
0.00985 | 3.81253E- | 0.0051 | 0.0069 | 0.0159513 | 0.0161 0.0086 | 0.0113 | 0.0024
b 1 05 34 11 53 71 | 0.01238 61 14 07
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2.59805
7

1.9491981
18

2.1373
77

2.0122
81

4.1801305 | 3.5001
63 1

3.63565
1

2.8985 | 2.9569

2.4134
42

Parameteii ecuatiei pentru estimarea cresterii curente cumulate a volumului lemnului
comercial pe picior

Tip
de
padur
e ConBroad AA FS OB 0oC PA PredBroad PredCon QR RP
46.673954 | 30.530497 | 44.829085 12.601595 | 44.919256 | 32.299057 16.715588 25.997850 18.196061 32.281655
a 43 18 38 97 29 09 39 93 52 66
0.0147184 | 0.0030074 3.28696E- | 0.0037633 | 0.0186437 | 0.0104423 | 0.0029483 | 0.0057469 | 0.0108597 | 0.0443396
b 84 87 05 08 59 37 5 35 68 13
2.3356956 | 1.5422796 1.3497339 1.2647875 | 2.5745870 | 2.1091347 1.3883909 1.4744664 1.6599627 | 2.8067358
c 6 81 47 44 06 66 28 32 36 27

Parametrii ecutiei Boudewyn privind modelarea alocarii de biomasa in compartimetele
arborelui functie de volumul lemnului comercial. P reprezinta proportia componentei de

biomasa din biomasa supraterana integrala (potrivit Boudewyn, P., Song, X., Magnussen, S.,
Gillis, M.D., 2007. Model-based, Volume-to-Biomass Conversion for Forested and
Vegetated Land in Canada. Canadian Forest Service, Victoria, Canada (Inf. Rep. BC-X-

411))).

[4) P stemwood =
(5) Praric = 1+ Ealmlxmﬁmixh'ai
((3) Poranches =

(?) P tolinge =

1

als=a2xvol +a 3xlvol

l+e

e al=a2xvol+adehol

E?b 1+ b2wvol +b3xlvol n

e cl+c2avol +0 3xlvol

+ é}bhblxwhbixhvf

e bl+b2swvol + b3xhvol

E:‘lu‘ Jevol +.¢ 3xclvol

al+a2=vol +a3xhvel

l+e

E:‘fl# Jwvel +o3xhvol

e bl+b2wvol +b3xdval +

;_?"ﬂl” Juvol +¢3uxlvol

al+a2xvel +a Jxdvel

l+e

€b1+b]:-cvoi +b3mlvol n

Valorile parametrilor pentru cele zece tipuri de padure

Ed” Yol +c3xlvol

Tip de

padure | al a2 a3 bl b2 b3 cl c2 c3

ROU_ 1.573653 | 0.001653 | 0.043681 | 1.917251 | 0.001318 | 0.067893 | 0.753406 | 0.005322 | 0.854548
PC 143 423 989 538 462 453 708 017 877
ROU_ - - - - - -
CB 1.688343 | 0.001696 | 0.255443 | 2.022535 | 0.001800 | 0.128927 | 0.722283 | 0.005140 | 1.059489
ROU_ - - - - - - - - -
AA 1.426523 | 0.000687 | 0.083774 | 1.822640 | 0.000141 | 0.056877 | 0.522418 | 0.000518 | 0.500000
ROU_ - - - - - - - -
ocC 1.195958 | 0.000340 | 0.044504 | 1.588882 | 0.002690 | 0.172668 | 0.888850 | 0.004805 | 0.407255
ROU_ 1573125 | 0.000498 | 0.022566 | 1.926269 | 0.000168 | 0.011293 | 0.870537 | 0.002046 | 0.443987
PA 306 028 376 813 29 606 754 936 026
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ROU_ - - - - - -
FS 1.675509 | 0.000425 | 0.153451 | 1.988408 | 0.001124 | 0.070280 | 0.796988 | 0.005713 | 1.132685
ROU_ | 1.716351 | 0.000573 | 0.139975 | 2.052043 | 0.001049 | 0.055252 | 0.951411 | 0.003589 | 0.968666
PB 128 495 714 708 959 471 23 983 404
ROU_ - - - - - -
0B 1.677640 | 0.000431 | 0.104280 | 1.990934 | 0.002655 | 0.119850 | 0.890889 | 0.008447 | 1.127068
ROU_ | 1578718 | 0.002813 | 0.057617 | 1.918073 | 0.001676 | 0.076810 | 0.756820 | 0.008479 | 0.862874
QR 567 506 124 416 584 471 282 747 224
ROU_ | 1.631169 | 0.008240 | 0.295419 | 1.940141 | 0.015736 | 0.303245 | 1.100035 | 0.018019 | 0.720251
RP 997 22 876 497 249 098 8 029 145

Parametrii pentru conversia volmului comercial in biomasa lemnoasa supraterana

Ecuatia B=A*Vol®, unde Vol — volumul comercial pe picior

Tip de padure A
ROU_PC 0.453425409 1.002847289
ROU_CB 0.488376 1.011117
ROU_AA 0.401728 0.997698
ROU_OC 0.414060 0.995031
ROU_PA 0.364690872 1.016230027
ROU_FS 0.649242 0.997663
ROU_PB 0.567652516 1.00460649
ROU_OB 0.638217 0.989001
ROU_QR 0.708919191 0.982355399
ROU_RP 0.605874314 1.014093923

Anexa 2b. Versiune articol asociat sarcina 5.6. (transmis la Carbon Balance and Management$
https://cbmjournal.biomedcentral.com/)

Anexa 2c. Article title: Downscaling dead organic matter and soil simulations and validations
Introduction
Methods

- Running Yasso15 with CBM output on sub national scale (intersection of climates and 10
forest types)
- Climate description for each climate unit (CLU)

CLU Tma Tmaxa Tmina Tamp Precipa
44 8.6 20.1 -3.7 23.8 550.1
43 8.7 19.4 -4 23.4 663
36 10 21.3 -3.5 24.8 477
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35 10.5 21 -2 23 600
34 10.6 21.1 -1.6 22.7 592
26 11.1 22.9 -1.2 24.1 587.2
25 11.6 20.8 1.7 19.1 540
45 8.6 20.1 -3.7 23.8 550.1

- Validation against total soil C stock measured by NFl in 2013
Results and discussion

Two analysis have been carried out: a) representationn of the AWEN and tocal C stock simulated by
Yasso15 compared to output from CBM-CFS — as “dot” graph compared to NFl box-and-plot on the
righ side (average value represented by a vertical bar), and b) representation of the total C stock for
each climatic unit vs. Totalc C stock from CBM and NFI2013.

Graphical representation and comparison for AA (Abies alba) and CLU (climate unit). Left is AWENH
vs. Total C stock from NFI. Right is comparison between Yassol5 and CBM for various CLU. Both
graphs compare against measured NFI(=NFI2010).
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Graphical representation and comparison for RP (Robinia sp.) and CLU (climate unit)
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Anexa 4.

Propagation of uncertainty from allometric biomass model parameters: an investigation
on parameter covariances

loan Dutca, Ronald McRoberts, Erik Naesset and Viorel NB Blujdea

Abstract

Forest biomass estimations at large scale typically rely on plot data from forest inventories.
The uncertainty of such estimations is essential for successful implementation of mitigation
policies such as REDD+. Allometric biomass models are routinely used to predict tree
biomass which is further aggregated at plot level. Two approaches are common for fitting
biomass allometric models: (i) linear model on log-log transformed data and (ii) nonlinear
model. Tree diameter at breast height (D) and tree height (H) are used as predictors of
aboveground biomass in these allometric models, either as separate variables, or as a
combined variable (D?H). Using a biomass dataset to develop generic allometric models and
an inventory dataset (for a forest district in Romania), we investigated the effect of fitting
approach (i.e. logarithmic transformation vs. nonlinear), and of predictor type (i.e. separate
vs. combined) on biomass prediction precision and accuracy. Although the uncertainty
sourced in model parameters was negligible, the uncertainty produced by residual variance
was not, being the main source of uncertainty. Furthermore, when nonlinear models were
weighted for heteroscedasticity, the differences between nonlinear and log-transformation
were minor, in terms of both mean predicted biomass and its standard error. Combining the
predictors (i.e. D?H), the model uncertainty reduction due to avoidance of collinearity
between D and H was modest and depended on fitting approach.

Keywords: biomass prediction uncertainty, error propagation, Monte Carlo, allometric
models, combined predictor, logarithmic transformation

1. Introduction
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It is widely acknowledged that world’s forests represent a key player in the reduction of
atmospheric CO2 concentration (Bonan 2008, Bellassen and Luyssaert 2014, Grassi et al.
2017), forests alone absorbing roughly 30% of anthropogenic CO2 emissions in the last few
decades (Pan et al. 2011). The rate of CO> absorption by forests could be improved by
conserving and enhancing the capacity for the carbon uptake in the current forests, by
increasing forest area and by reducing/avoiding deforestation (Grassi et al. 2017). Because of
large uncertainties associated with forest carbon estimations, it is often more difficult to
implement effective mitigation policies (Gren and Zeleke Aklilu 2016). These limitations
hamper the success of so called ‘forest carbon activities’ such as REDD+ (Reducing
Emissions from Deforestation and Forest Degradation in Developing Countries), AR
(Afforestation/Reforestation mechanism, part of Clean Development Mechanism) or IFR
(Improved Forest Management), with possible negative consequences on climate change
mitigation efforts.

Estimating biomass with great accuracy and precision is challenging. Uncertainties in
forest biomass/carbon estimations arises from several sources that relate to sampling,
measurement, model selection and model uncertainty (McRoberts et al. 2015, Yanai et al.
2018). Model uncertainty is often ignored when aggregating tree predictions at plot level in
forest inventory programs (McRoberts and Westfall 2014). When ignoring model uncertainty,
it is assumed that model parameters are fixed and that model residuals are always zero. In
other words, it is assumed that trees of similar diameter and height exhibit always the same
aboveground biomass, which in reality is never true.

Diameter at breast height (D) and tree height (H) are common predictors of biomass.
Since D and H are related, the models based on both D and H will always show some degree
of collinearity (Sileshi 2014, Dutca et al. 2018b) with possible negative consequences on
parameter non-identifiability and model uncertainty (Dormann et al. 2013). To avoid
collinearity, a combined independent variable (i.e. D2H) is frequently used in forestry studies,
being argued that aboveground tree biomass/volume is proportional to a cylinder of diameter,
D and height, H (Burkhart and Tomé 2012).

Combining the variables D and H into D?H was shown to produce a loss in prediction
accuracy (Dutca et al. 2019), which is proportional to the Q-ratio (i.e. the ratio between
parameter estimate of D and parameter estimate of H, see Dutca et al. (2019)). However, the
authors showed that a combined predictor can still be used (without adverse effect of
prediction accuracy loss) if the ratio between parameter of D and parameter of H in this new
combined predictor equals the Q-ratio. Therefore, in this study we use the combined predictor
DOH, where Q is the Q-ratio, as proposed by (Dutci et al. 2019). The advantage of this
combined predictor consists in the reduction of number of parameters (and therefore of
variances) to be estimated and also in the reduction of number of covariances, from 3 (for a
model where D and H are separate predictors of AGB) to just one, for the combined predictor
based model (AGB predicted by DPH). Therefore, in this paper we investigate whether
reducing the number of variances and covariances to be estimated (i.e. by using the combined
variable D®H instead of D and H separately) has any effect on large scale biomass estimation
accuracy and precision.

2. Material and methods

2.1. Data

2.1.1. Biomass data

Spruce data from (Schepaschenko et al. 2017).

To develop the allometric models, we used a publicly available dataset (Schepaschenko et al.
2017) consisting of 6308 trees sampled from Europe and Asia. Since the dataset contained
many species, we removed those species not existing in the inventory dataset (to which the
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model was applied to predict biomass). Therefore, we developed the models based on 1983
trees, called further ‘model dataset’. For this reduced dataset, the diameter at breast height
(D) varied between 5 and 72.9 cm, tree height (H), between 3.5 and 42.8 m, and aboveground
biomass (AGB), between 2.2. and 4291.3 kg.

2.1.2. Inventory data

Pure spruce plots from Romanian NFI (=243 plots and 4946 trees).

The models developed based on biomass dataset were further applied to estimate biomass in
243 sample plots of pure Norway spruce. The 243 plots were selected from Romanian NFI,
based on two conditions, simultaneously: (1) the plots contain only Norway spruce trees; (2)
the H-D ratio of trees within plots ranges only between 0.5 and 1.7. This decision is justified
by the fact that plot data should be within the same range as biomass data (with regard to H-D
ratio), and by the fact that trees outside this H-D ratio range may be trees that are damaged
(e.g. broken trunks) or trees with inaccurate measurements of either D or H. Because the
Romanian NFI grid for mountain area (where pure Norway spruce occur) is 4 by 4 km, the
243 plots correspond to a forest area of 388.8 thousand hectares.

Height-diameter (H-D) ratio is one of the main drivers of variance in biomass
allometric models (Feldpausch et al. 2010, Dutca et al. 2018a). We checked whether the
distribution of H-D ratio in model dataset matches the inventory dataset. Figure 1 shows a
good agreement between histogram (model dataset) and density line (inventory dataset). H-D
ratio ranged between 0.36 and 2.56 for model dataset and between 0.42 and 2.11 for the
inventory dataset. The ranges of D and H were also similar to model dataset, varying between
5 to 72.8 cm and respectively between 3.8 and 44.8 m.

0.8 12 1.6

Density

0.4

I T T T T 1
0 0.5 1.0 1.5 2.0 25

H/D ratio

Fig. 1. The H-D ratio for dataset used to develop the models (histogram) and for inventory
dataset (violet line)

2.2. Modelling framework
2.2.1. Weighted nonlinear model with separate variables

(1) AGB =, -DP1-HPz +¢
Based on Eqg. 6 we further determined the Q-ratio, Q = E_l , (Dutca et al. 2019) and then
2

calculated the combined variable K = DQH which was used further into the modelling

process.
2.2.2. Weighted nonlinear model with combined variable

(2) AGB=f,-KPs+¢

31



Mathematically, Equations (1) and (2) are equivalent under B2 = 3, since equation (2) can be
re-written as:

B1
(3) AGB =, (D2 -H)Bs +¢
However, equation (2) has a reduced number of parameters (2 parameters instead of 3
parameters in Eq. (1)) therefore a reduced number of variances and covariances to be
estimated. The number of covariances is reduced from 3 covariances in Eg. (1) to just one
covariance in Eq. (2).

2.3. The weights in nonlinear approach

Since in their nonlinear power-law form the allometric models usually exhibit
heteroscedasticity (increase of variance with predictor) a weighted nonlinear model was used.
We predicted the variance as a function of predicted AGB, and then calculated the weights as
inverse of predicted variance, following the procedure used by (Dutca et al. 2019).

2.4. Adjustment of heteroscedastic residual standard error

Because variance is heteroscedastic in allometric models, the residual standard error in not
constant across the predictor range. To propagate the error from residual variance, we
sampled from a normal distribution (0, 1), which was truncated to the interval [-3, 3], and
then adjusted the sampled value with the predicted standard deviation (G;), as a function of
predicted biomass (AGB;). We used a procedure in 8 steps, similar to calculating the weights
(Dutci et al. 2019): (i) calculate AGB; and residuals (g;) from weighted nonlinear allometric
models (Equations 1 and 2); (ii) the pairs AGB; and &; were ordered ascending with respect to
AGB;; (iii) the pairs AGB; and ¢; were aggregated into groups of size 25; (iv) for each group,
the mean K@g (mg) and the standard deviation of ; (oz) were calculated; v) the resulted
values (mg and o) were log-transformed (using natural logarithm); (vi) a linear model was

fitted, predicting standard deviation [In(o,)] as a function of [In([TGFg)]; (vii) the models
were back transformed, using a correction factor as in Eq. 3; (viii) the residual standard error

(6,) was predicted further as a function of AGB;:
4) W =1/(0.2240 x AGBiO'9407) for Equation (1), and
—— 0.9414

(5) W = 1/(0.2234 x AGB; ) for Equation (2).

2.5. Propagation of errors in AGB prediction
The AGB prediction and its uncertainty over 243 plots was assessed, following a seven-step
Monte Carlo simulation procedure, adapted from McRoberts et al. (2015, 2016):

2.5.1. Using Taylor series based covariances

Step 1. For the kth replication, a random vector containing two or three parameters (i.e. Po
and B, for models based on combined predictor; Bo, B1 and B2 for models based on
separate predictors) is drawn at a time from a multivariate normal distribution; the
multivariate normal distribution was created based on parameters resulted from Egs.
1, 2, 6 and 7 and their variance-covariance matrices.

Step 2. Sample the residual. From a normal distribution N(0, 1) one value at a time was
drawn. This value was adjusted by multiplication with the predicted standard
deviation (G,) described earlier in section 2.4.
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Step 3. For the i tree on the j™ plot the AGB was calculated. For nonlinear approach, the
AGB was calculated as in Egs. 6 and 7. The model parameters are those sampled in
step 1 and the residual is from step 2.

Step 4. The biomass of each plot was calculated as: AGB; = 20 X Z?zleGBi, where nj is the
number of trees in plot j and AGB; is the aboveground biomass of tree i, calculated in
step 3.

Step 5. Forpthe kth replication, the mean and its variance were calculated as:

(8) AGBk =—XP, AGB;

(9  var(AGBy) = ——— X, (AGB; — AGBy)?

m(m-1) <)
where m is the number of plots (i.e. m = 38).
Step 6. The steps 1-5 were replicated nrep = 1000 times and the mean and variance

over replications were calculated as:

o 1 oMreprpme
(10) p= EZEJ AGBy

(1) var@® = (1 + =) == 57 (AGBy — ) + 3,7 var(AGBy)

Nrep— =1 =1
(12)  SE(f) = y/var(f))
Step 7. The steps 1-6 were repeated for 5000 times, until {i and SE(ji) stabilized. The
last values in the chain were further reported (i.e. the mean i and SE(ji) over 5000
repetitions).

5.2.2. Including a bootstrap procedure in the error propagation process

2.7. Data processing

Statistical analysis was performed in R (R Core Team 2017) with the RStudio interface
(RStudio Team 2016) and using the packages ‘nlme’ (Pinheiro et al. 2018), ‘MASS’
(Venables and Ripley 2002).

3. Results

3.1. The curvature in the model parameters covariance

3.2. The effects on large scale biomass prediction accuracy and precision

The differences between logarithmic transformation and weighted nonlinear approach were
minor, of up to 0.34% for the mean predicted biomass and of up to 4.3% for the standard
error of the mean (Table 1). However, when nonlinear models were not weighted for
heteroscedasticity, that resulted in larger differences, of up to 6.1% with regard to mean
biomass and of up to 10% with regard to standard error. Comparable differences were
observed also between weighted nonlinear and non-weighted nonlinear approach (5.8% and
9.3% with regard to mean biomass and standard error respectively). The mentioned
differences between fitting approaches were slightly smaller for the separate variables than
for combined variable models.
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Fig. 2.

Mean biomass and standard error of the mean as resulted from different fitting approaches
(i.e. logarithmic transformation, weighted nonlinear and nonlinear without weights), different
predictor types (i.e. separate and combined) and different sources of uncertainty. Note:
Uncertainty sources: (1) uncertainty due to differences between plots only; (2) uncertainty
due to differences between plots and model parameters; (3) uncertainty due to differences
between plots and residual variance; (4) uncertainty due to differences between plots, model
parameters and residual variance (1.a.5., 1.a.6, 1.b.5 and 1.b.6 from Table 1, were not
plotted).

3.2. Predictor type

Contrary to our expectation that combined predictor model, due to avoidance of collinearity
between D and H, would reduce the prediction uncertainty (when model uncertainty is
included), the reduction was modest and depended on fitting approach. For non-weighted
nonlinear models, the standard error of the mean, reduced indeed by up to 9%, for weighted
nonlinear model the reduction was by up to 2%, while for the log-transformation approach
the reduction was very small (i.e. 0.09%).

When ignoring model uncertainty, the standard error of the mean was lower for the separate
variable models, due to introducing more degrees of freedom into the modelling process. The
difference (between separate and combined predictor models when ignoring model
uncertainty) was largest for non-weighted nonlinear model (i.e. 7.6%) and smallest for log-
transformation approach (i.e. 0.7%). However, when including model uncertainty, that
reversed in favour of combined predictor model. Standard error of the mean became smaller
for the combined predictor model. But contrary to our expectation, this recovery was not
produced by improvement of standard errors of the model parameters (due to avoidance of
collinearity), but by residual variance.

The decrease of standard errors of the predicted mean biomass (due to avoidance of

collinearity, therefore from separate variables to combined variable model) was largest for
non-weighted nonlinear model (i.e. from -7.6% to +9%) and smallest for log-transformed
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approach (i.e. from -0.7% to +0.09%). Therefore, the effect on prediction uncertainty
produced by avoiding collinearity between D and H depended on fitting approach, being
largest for non-weighted nonlinear models and lowest for logarithmic transformation
approach.

With regard to mean predicted biomass, the differences between separate and combined
variable models, were negligible for log-transformation and weighted nonlinear approaches
(differences of up to 0.5%) and slightly larger for the non-weighted nonlinear approach (of up
to 1.3%). In our analysis, mean predicted biomass per hectare was larger for separate
variables model when using log-transformation and weighted nonlinear approaches, and
larger for combined predictor models when using non-weighted nonlinear fitting approach.

3.3. Uncertainty sources

Regardless of fitting approach and predictor type, the effect of model parameters uncertainty
was minor. The standard errors of the mean biomass per hectare increased only by up to 1.8%
compared to when model uncertainty was completely ignored. However, the largest model
uncertainty was sourced in residual variance. The residual variance of the models increased
the standard error of the mean biomass per hectare by between 268% and 336%, depending
on fitting approach and predictor type.

Very small differences between models including different uncertainty sources were observed
with regard to mean predicted biomass (differences of up to 0.3%).

3.4. Multiplicative vs. additive error propagation

The residuals were attached to the back-transformed model (i.e. log-transformation approach)
by multiplication (Eq. 4 and 5), rather than addition, as it was the case of weighted and non-
weighted nonlinear models. The results showed that differences between the two propagation
methods did not differ considerably. The standard error of the mean predicted biomass
resulted from additive model differed from multiplicative model only by 4.3% for the
combined predictor and by 2.3% for the separate variables models.

4. Discussions
4.1. Model uncertainty

Our results showed that when using generic allometric models to predict biomass, model
uncertainty has a great impact on biomass prediction uncertainty and therefore should not be
ignored. The greatest source of model uncertainty was in the residual variance. Although
McRoberts and Westfall (2014) found residual variance to make little contribution to overall
uncertainty in volume estimates, that was only valid when using species-specific allometric
models. However, our results confirm the hypothesis of McRoberts et al. (2016) that the
residual variance of a generic allometric model may produce uncertainty in the estimates that
cannot be ignored. Our results also confirm that uncertainty produced by model parameter is
small and therefore may be ignored in biomass estimations (McRoberts and Westfall 2014,
Stahl et al. 2014, McRoberts et al. 2015). This is an important aspect for practice, since the
variance-covariance matrix needed to propagate errors from model parameters is often
missing anyway in published research.
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The residual variance was the main driver of model uncertainty. For our dataset the standard
error of residuals was 0.2. Nevertheless, we expect larger effects of model uncertainty on
total prediction uncertainty when the standard error of residuals is larger. For example, Chave
et al. (2014) reported a standard error of residuals in logarithmic scale of 0.357, expecting
therefore a larger effect on biomass prediction uncertainty in tropical forests.

We showed that using a correct weighting in nonlinear models, while the logarithmic
transformation removes all heteroscedasticity, the results obtained by these two approaches
are very similar. However, ignoring the weighting of heteroscedastic variance, the two
approaches produce slightly different estimates. Logarithmic transformation is easy to
implement and very straightforward. The error term (multiplicative), is normally distributed
in logarithmic scale, therefore, model uncertainty can be propagated directly from a normal
distribution. However, logarithmic transformation makes sense as long as heteroscedasticity
is removed. If heteroscedasticity is not removed entirely, then a weighted nonlinear approach
would be much more flexible. Although the multiplicative error approach can be
implemented also for nonlinear models (Parresol 1999), the nonlinear approach, assumes an
additive error. Because of heteroscedasticity, the distribution of additive residuals is assumed
normal for every value of independent variable, but the resulting distribution of all residuals
although symmetric, is not normal. Therefore, the limitation of additive error propagation in
allometric models, is represented by the need to construct a tool to propagate errors from a
normal distribution while the distribution of residuals is not normal (see section 2.4.).

For our analysis, the differences between separate predictors models and combined predictor
models were dependent on fitting approach. The differences between separate and combined
predictor models were larger for non-weighted nonlinear models with regard to both mean
predicted biomass and standard error of the mean. However, Dutca et al. (in preparation)
showed that efficiency of D?H predictor depends on the ratio between parameter of D and
parameter of H in separate variables model (Q ratio). For our dataset, Q-ratios were closer to
the neutral value of 2.0 (which show equivalence between separate and combined predictor
models) for log-transformation approach (Q = 2.31) and weighted nonlinear approach (Q =
2.45) whereas for non-weighted nonlinear approach the Q-ratio was much more distant from
2.0 (Q = 4.88). Therefore, our results confirm the hypothesis of Dutca et al. (in preparation)
that the difference between separate and combined variable models becomes larger as Q-ratio
increases. Nonetheless, our results should be interpreted with care, and make always
reference to Q-ratio when making inferences about separate and combined variable models
for log-transformation and weighted nonlinear approaches.

5. Conclusions

The conclusions of the study can be summarized as: (i) the uncertainty sourced in model
parameters was small and therefore negligible, however, the uncertainty produced by residual
variance was important and therefore should be always included when using generic
allometric models; (ii) when nonlinear models were weighted for heteroscedasticity, the
differences between nonlinear and log-transformation were minor, in terms of both means
and standard errors, however, when not weighted, the differences were larger, of up to 10%;
(iii) combining the predictors, the uncertainty reduction due to avoidance of collinearity
between D and H was modest and depended on fitting approach; (iv) when propagating errors
from residual variance, the correction factor for back transformation in allometric models is
not necessary since the simple random sampling estimates directly the mean of lognormal
distribution of residuals; (v) mean predicted biomass is based on mean of the lognormal
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distribution of the intercept (which is different from the back-transformed mean of normal
distribution) and therefore is biased, being proposed a correction factor.
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Abstract

Developing allometric biomass models is a particularly important process, because the
accuracy and precision of forest biomass and carbon estimations depend, to a degree, on these
models. The effects of tree sampling on tree aboveground biomass (AGB) prediction
accuracy and precision are intricate and, therefore, can often be misleading. In this paper,
using a Monte Carlo simulation, we investigated how the model prediction accuracy and
precision are affected by the tree sampling characteristics. Because diameter at breast height
(D) is the most common predictor of AGB, we focused our analysis on AGB-D relationship.
The following sampling characteristics were investigated: (i) sample size, (ii) length of D-
range (difference between the largest and the smallest D value), (iii) position of D-range and
(iv) distribution of sample trees. We found that, although the natural variability of AGB-D
relationship was a key driver of both prediction accuracy and precision, the sampling
characteristics were important mainly for improving prediction accuracy. Both, the sample
size and distribution of sample trees, although having a negligible effect on precision, had a
substantial role in improving prediction accuracy. Despite that small trees were more
informative in allometric models, influencing goodness of fit and standard errors of model
parameters, we showed that selecting a constant number of trees for each D class (i.e.
uniform distribution of the sample trees on D-range) produced models with improved
capability regarding prediction accuracy. The length and position of D-range, although
considerably affecting the goodness of fit and the standard errors of allometric model
parameters, had only a marginal effect on AGB prediction accuracy and precision.
Furthermore, we showed that R? was a poor indicator of model prediction accuracy and
precision, being sensitive to changes in D-range. Following these results, we develop
practical recommendations to improve biomass prediction accuracy and precision.

Keywords: tree sampling, prediction, uncertainty, allometric equation, aboveground biomass,
diameter at breast height

1. Introduction

It is widely accepted that forests play a critical role in the fight against climate change (Grassi
et al., 2017), therefore accumulation of carbon in tree biomass is regarded as an important
service provided to the society. However, to create sustainable mitigation measures and
programmes such as REDD+ (Reducing Emissions from Deforestation and Forest
Degradation) requires that accumulation of carbon in forests is accurately and precisely
estimated. Estimating carbon accumulation in forests is typically done based on forest
inventory data to which allometric models are applied (Brown, 2002; Chave et al., 2004;
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Clark et al., 2001; Stephenson et al., 2014). In a first step the forest biomass is estimated,
then, using a constant proportionality ratio, e.g., 0.47 (IPCC, 2006), the biomass is
transformed in carbon, which can be further converted into equivalent CO». Therefore, since
the ratio between biomass and carbon is a constant, the terms ‘carbon accumulation’ and
‘biomass accumulation’ have roughly the same meaning.

Producing accurate and precise predictions of biomass is challenging for several reasons.
First, it needs an unbiased forest inventory design with accurate measurements on tree
attributes. Second, it requires that allometric biomass models are representative for the forest
inventory data to which the model is applied. Selection of the allometric model was shown to
be an important step in the reduction of biomass prediction uncertainty (Picard et al., 2015).
Allometric biomass models are nonlinear regression models that typically use tree diameter at
breast height (D) and/or tree height (H) to predict tree aboveground biomass (AGB), based on
a sample of trees for which biomass was measured. Representativeness of the model to the
forest inventory data requires that the trees were selected from the population (to which
applies the forest inventory). Allometric biomass models were shown to depend largely on
site conditions (Dutca et al., 2018a) which would increase the complexity of tree sampling
and would limit the transferability of these models.

The range of tree sizes and the distribution across the range are important prerequisites for
sampling. The range represents the difference between largest and the smallest value of
predictor (e.g. D) of sample trees used to build the model. Distribution of sample trees (on D-
range) is often referred to as ‘D class distribution’ (Chave et al., 2004; Roxburgh et al., 2015)
because D is usually measured in forest inventories with an increment of 2 cm (or other
values) and therefore, a variable which would be expected to be continuous, is in fact
discrete. However, when developing allometric biomass models, diameter at breast height (D)
Is measured as accurately as possible, therefore, D is usually a continuous variable.

Because allometric models are site-specific (Dutca et al., 2018a), there are numerous
examples of published allometric models based on trees sampled from one or few forest
stands limiting therefore their D-range (Chojnacky et al., 2014; Jia et al., 2015; Marziliano et
al., 2015; Morhart et al., 2016, 2013; Mosseler et al., 2014; Zianis et al., 2005) or deliberately
developed allometric models only for small trees (e.g. Pajtik et al. 2008; Dutca et al. 2010;
Blujdea et al. 2012; Ciuvat et al. 2013). Nevertheless, the tree size is naturally limited, the
maximum tree height being influenced by the stress and resource abundancy, while being
limited by hydraulic constraints (Koch et al., 2004). Although maximum tree height is
physically limited, trees continue to accumulate biomass by increasing their diameter
(Stephenson et al., 2014). Generic allometric models and biomass databases often include
very large trees, for example, D of up to 212 cm (Chave et al., 2014), up to 293 cm (Jucker et
al., 2017) or even up to 648 cm (Falster et al., 2015).

The process of biomass measurement is very laborious; therefore, it is very important that
sampling (for model development) is done optimally. The result of an optimized sampling
should be an allometric model that predicts biomass as accurately and precisely as possible.
In this paper, using a Monte Carlo analysis, we investigate which characteristics of tree
selection affect biomass prediction accuracy and precision, and how. The sampling
characteristics that were investigated are: (i) sample size, (ii) length of D-range (i.e.
difference between largest and the smallest sample tree), (iii) position of D-range (i.e. when
two D-ranges have the same length, the position is given by the starting or ending point of the
range) and (iv) distribution of sample trees (i.e. frequency distribution of selected trees across
D-range). Our study aims to provide key information for improvement of biomass prediction
in forests.
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2. Material and methods

To demonstrate the effects of sampling characteristics on biomass prediction accuracy and
precision we performed a simulation study, which entails the following steps: (1) bivariate
sets of AGB-D data were simulated, featuring various characteristics of the sample trees (e.g.
AGB-D variability, sample size, D-range); (2) allometric biomass models were fitted to
simulated data; (3) the allometric biomass models were then applied to predict the biomass in
a plot, and the errors from model parameters and residual variability were propagated into
plot AGB prediction; (4) the AGB prediction accuracy and precision (at plot level) were
assessed; (5) examined which characteristics of the sample trees considered in the first step
(i.e. AGB-D variability, sample size, D-range) affected the model’s prediction accuracy and
precision, and how.

2.1. Some rationale on the simulation design

Logarithmic transformation is widely regarded as a standard procedure in the development of
allometric biomass models, although this is the subject of great debate (Kerkhoff and Enquist,
2009; Packard, 2012; Packard and Boardman, 2008; Xiao et al., 2011). The standard
assumptions of this type of transformation are (i) the heteroscedasticity, which is common in
allometric models, is entirely removed by transformation and (ii) the errors are lognormally
distributed in original scale, so they will be normally distributed in log-log scale. If these two
assumptions hold true, then the errors in original scale can be assumed multiplicative (the
residuals in original scale are expressed as a ratio between observed and predicted biomass
and therefore show the percent variation of observed biomass relative to predicted biomass).
However, if the two assumptions do not hold true, then the logarithmic transformation would
not be recommended, as the general assumptions of a linear model (e.g. normality of
residuals, homogeneity of variance) would not be met. Xiao et al. (2011) showed that
although both the multiplicative and the additive error-type relationships occur in nature, the
relationships with multiplicative errors were much more frequent. Also, because diameter at
breast height (D) is the most common predictor of tree aboveground biomass (AGB), we
focused our simulation on ABG-D relationship, starting from a log-log linear model:

(1) In(AGB) =By +B; In(D) +¢

Where AGB is the aboveground biomass (in kg); D is the diameter at breast height (in cm);
‘In’ is the natural logarithm, 3, and ; are the model parameters in logarithmic scale and ¢ is
the additive error term (additive for the log-log scale), normally distributed with the mean
zero. We then defined some true parameters of a hypothetical population. Because the
population is hypothetical, to make the values of parameters credible, we derived the
parameters from a real biomass dataset reported by Schepaschenko et al. (2017). Therefore,
the true model parameters for our hypothetical population were:

2 In(AGB) = —2.11 + 2.33 - In(D) + ¢; e~N(0, RSE)

Starting from these true parameters, we generated random sets of In(AGB) — In(D) data
which were further fitted and then the resulting model applied to a plot dataset to estimate the
biomass. Each generated dataset had specified characteristics such as RSE (residual standard
error) of log-log model, number of observations, D-range length, position and distribution. A
Monte Carlo approach (which will be described in greater detail) was used.

2.2. Natural variability of AGB-D relationship

The natural variability of AGB-D relationship is that intrinsic variability in the population
that should be captured by the sampling design. This natural variability can be reduced by
including additional AGB predictors in the model. However, the natural variability should not
be influenced by the sampling characteristics such as the ones investigated in this study.
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Because we assumed that heteroscedasticity is removed by logarithmic transformation and
that errors are lognormally distributed in original scale, the natural (or intrinsic) variability of
AGB-D relationship can be expressed as the standard deviation of residuals of the log-log
linear model, or, commonly reported, as the residual standard error (RSE) (see Eqg. 2). Since
the residuals of a back-transformed log-log linear model show relative variation of AGB
(relative to predicted AGB), the RSE can be interpreted, for original scale, as a form of
coefficient of variation (Cole and Altman, 2017). We tested two values of RSE in this study,
0.2 and 0.3, which can be interpreted as 20% and 30% coefficient of variation. These two
values are within a range that is common in allometric biomass models. For the dataset used
to derive the parameters (Schepaschenko et al., 2017), the RSE was 0.28.

2.3. Sampling characteristics

2.3.1. Number of observations (sample size)

The number of sample trees necessary to develop an allometric model depends on desired
precision, on the level of intrinsic variability (of AGB-D) relationship and some other factors.
Roxburgh et al. (2015) performed a simulation study to find the number of sampled trees
necessary to develop allometric models. They concluded that, given the intrinsic variability of
trees and the differences between distribution of tree diameters used to construct the model
and the distribution of tree diameters of the inventory data, a number of 17 to 166 trees were
required to obtain prediction with a standard deviation within 5% from the mean. However,
Picard et al. (2012) suggested that approximately a minimum number of 100 trees was
needed to construct volume models. In our simulation design we tested three values of
sample size, n = 100, n = 150 and n = 1000 trees. The first two values (n = 100 and n = 150)
were intended to determine the effect of a 50% increase in sample size, as to compare it to a
50% increase in RSE (from RSE = 0.2 to RSE = 0.3). The third value (n = 1000) was
intended to see how increasing the sample size influences the model prediction performance.

2.3.2. The length of D-range

The range of diameter at breast height (D) used in allometric biomass models varies greatly.
In a compilation of allometric models, Zianis et al. (2005) showed that the largest sampled
tree included in that compilation of studies was 90 cm. However, most studies included in the
compilation were based on a relatively narrow D-range, with no consistent starting point for
the range. For example, the largest tree of 90 cm was recorded in an allometric model for
Quercus ilex in Italy and the minimum recorded diameter was 20 cm. Comparable maximum
limits of D-range has been reported in some recent biomass datasets for boreal and temperate
forests (Schepaschenko et al., 2017; Ung et al., 2017), although larger D-range of sampled
trees were reported for tropical regions (Chave et al., 2014; Falster et al., 2015; Jucker et al.,
2017). For our simulation study, assuming a maximum D-range in allometric biomass models
between 0 and 90 cm (Zianis et al., 2005), we divided this interval in three, resulting three
diameter intervals of 30 cm. Starting from the second interval (i.e. Imin = [30, 60]), we
gradually expanded Imin in two directions (i.e. towards small diameter and towards large
diameters) until reaching the limits of the maximum D-range, resulting seven D intervals.
However, besides these seven intervals we examined another one for the entire D-range (i.e.
Imax = [0, 90]), testing therefore a total of eight D intervals (Table 1).

Table 1. D-range intervals used for simulation

Code D-range (cm) Description
S3 [0, 60] Imin + 30 cm towards small diameters
S2 [10, 60] Imin + 20 cm towards small diameters
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St [20, 60] Imin + 10 cm towards small diameters
Imin [30, 60] The minimum D-range length
B [30, 70] Imin + 10 cm towards large diameters
B2 [30, 80] Imin + 20 cm towards large diameters
Bs [30, 90] Imin + 30 cm towards large diameters
Imax [0, 90] The maximum D-range length

2.3.3. The position of D-range

The position of D-range is characterized by the starting point of D-range. Each pair of similar
length of D-range, began at two different positions (Table 1). For example, the intervals S;
and B1 have similar length (i.e. 40 cm) but their starting position differ by 10 cm. This
difference increases to 20 cm for Sy vs. B, and to 30 cm for Sz vs. Bz (Table 1).

2.3.4. Distribution of sample trees

The desired frequency distribution of the sample trees is a very important prerequisite for tree
selection because it dictates the level of physical effort and logistics required for measuring
biomass. If the selection of trees would be done in a completely random manner, the
distribution of the sample trees would match that of population. However, the trees are not
selected in a completely random manner but they are randomly sampled for each D-class
(McRoberts et al., 2015). A ‘D class’ represents a grouping of tree diameters into classes of a
specified range. For example, for a 2 cm D class, the entire D-range is divided into intervals
(“classes”) of 2 cm (e.g. D =10 to 12 cm represents a D class). The worker has therefore the
possibility to control the shape of resulting frequency distribution over the entire D-range.
Nevertheless, the distribution of sample trees will influence how the model will be informed
across the range of D, with consequences for prediction. In our simulation, we explored four
types of distribution (Fig. 1):

(@) Uniform distribution on D-range (Fig. 1, a), where a constant number of sample trees
is selected for each D class. However, for our simulation, we randomly selected the
trees from a continuous, uniform distribution, because D was assumed being
accurately measured.

(b) Normal distribution on D-range (Fig. 1, b), where the largest number of sample trees
is from the middle of D-range and decreases towards the margins of the range;

(c) Uniform distribution on In(D)-range (Fig. 1, c1), which, for the original scale (D-
range) is equivalent to inverse of uniform distribution (Fig. 1, c2, resulted by
exponentiation of observations sampled from a uniform distribution on In(D)-range).

(d) Normal distribution on In(D)-range (Fig. 1, d1), which is equivalent to lognormal
distribution on D-range (Fig. 1, d2). For both, the uniform and normal distribution on
In(D)-range, a larger number of small trees is sampled compared to large trees (Fig. 1,
c2 and d2).
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(a) Uniform distribution on D-range (b) Normal distribution on D-range
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Fig. 1. The illustration of distributions used for simulation. (a) Uniform distribution on D-
range; (b) Normal distribution on D-range; (c1) Uniform distribution on In(D)-range, which,
on D-range, is equivalent to inverse of uniform distribution (c2); (d1) Normal distribution on
In(D)-range, for which, the equivalent in original scale (therefore on D-range) is the
lognormal distribution (d2).

For uniform distributions, the limits of D interval are easily implemented. However, the
normal distribution has no limited range, which, theoretically, extends to infinity. For our
simulation we therefore sampled from a truncated normal distribution, in which lower and
upper bounds of D-range were established. This was done using ‘rtruncnorm’ function from
‘truncnorm’ package in R (Mersmann et al., 2018). We have set the D-range to correspond to
+ two standard deviations, therefore representing an interval in which 95% of observations
from a normal distribution should occur. The mean of the normal distribution (pq) was the
mean of D interval of interest:

(Pmax—Dmin)
() Ha = Dmin + =5
whereas the standard deviation (o4) was calculated as:

(4) 04 = Ud_ZDmin

where Dmin and Dmax the minimum and respectively maximum limits of the D-range of
interest (Table 1). For example, the normal distribution for Imin = [30, 60] cm was defined by
the mean (for this example pq = 45) and standard deviation of the mean, which in this case

04 = 7.5.
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2.4. Plot data

We compared the simulated models, by assessing their accuracy and precision, when
estimating the biomass in a plot. Therefore, each allometric model developed based on
simulated data was further applied to estimate the biomass in a 500 m? plot. The plot contains
21 trees for which biomass was predicted as a function of D, by all simulated models.
Because the only D interval that is common to all tested D-ranges is Imin = [30, 60] cm, we
selected a plot that contained only tree diameters that fell within the Imin interval (Fig. 2). The
aim of this plot is to be used as reference for prediction, for all simulated models in this study
(in total, 4.8 billion allometric models). Therefore, the predicted AGB of this plot should be
of no value unless compared to predicted AGB resulted from another model with different
samgling characteristics.

o

Density
0.04 0.06
1 1

0.02
1

T T T T T T 1
30 35 40 45 50 55 60
D (cm)

Fig. 2. The distribution of the 21 sample trees in the plot.

It is known that models have a poorer prediction performance on the extremes of covariate
range. For example, a biomass model that was developed based on sample trees with D =1 to
90 cm, would perform best when predicting biomass of trees from the centre of D-range (D =
45.5 cm) and worst when predicting the biomass of a tree with either D =1 cm or D =90 cm.
Therefore, one of the aims of the study was to check how models perform across D-range.
Consequently, another reason for selecting just one plot with D-range limited to Imin was to
check the prediction performance when just part of model’s D-range was used for prediction.
A third reason for considering just a single plot was linked to the sources of uncertainty. In
this study we aimed to account only the uncertainty produced by the model (from model
parameters and residuals) and intentionally avoided including the uncertainty produced by
differences between plots.

2.5. Monte Carlo simulation

A Monte Carlo analysis, including an error propagation approach adapted from McRoberts et
al. (2015, 2016), was used to assess the effects of sampling characteristics on biomass
prediction. We followed the next steps:

1. For the kth replication (K = 5000), an allometric model was developed and applied to
predict biomass in the plot. The allometric model was developed based on simulated
In(AGB)-In(D) data selected from the hypothetical population:

1.1. defined a vector containing the errors of log-log linear model. The length of this
vector equals the sample size (3 values of sample size were used in this analysis, n
=100, n = 150 and n = 1000, see section 2.3.1). The values of the vector were
randomly selected from a normal distribution with the mean zero and standard
deviation either 0.2 or 0.3 (later on in the simulation design, the standard deviation of
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this distribution will become the residual standard error, RSE, of the allometric
model; two values of RSE were used, RSE = 0.2 and RSE = 0.3, see section 2.2).

1.2. defined a vector containing sample In(D) values, which were randomly selected from
a specific distribution (4 types of distribution were used, see section 2.3.4) and a
specific D-range (a total of 8 intervals were used, Table 1). Because we fit the
models in log-log scale, for uniform and normal distributions on D-range (Fig. 1, a
and b), we randomly selected the sample D values from a uniform and respectively
normal distribution on D-range and then log-transformed the sampled values (in
order to get the In(D) values); for uniform and normal distributions on In(D)-range,
we sampled the In(D) values directly in log-log scale, from a uniform and
respectively normal distribution on In(D)-range (Fig. 1, see c1 and dl);

1.3. defined a vector (length of the vector equals the sample size, see section 2.3.1)
containing the sample In(AGB) values. Using the In(D) values (obtained at step 1.2)
and the error term (obtained at step 1.1) in Eq. 2, we predicted the In(AGB) values.

1.4. fitted a linear model with the sample In(AGB) (obtained at step 1.3) and In(D) values
(obtained from step 1.2):

(5) In(AGB) =By +B;-In(D) + ¢
1.5. We retained the standard errors of model parameters, SE(3o) and SE(B1), and the

coefficient of determination (R?):
%(In(AGB);-In(AGB);)>

) R = 1= intace), A,

Where In(AGB); is the observed In(AGB); In(AGB); is the predicted In(AGB) and In(AGB);

is the mean of In(AGB).

1.6. defined the variance-covariance matrix to account for the covariance between o and
B1 in the next steps;

2. In this step we used the allometric model developed at step 1 (one model for each kth
repetition) to estimate the biomass in a plot. Therefore, for the jth repetition (J = 5000),
we:

2.1. defined a vector containing two values (Bo and B1) sampled at a time from a bivariate
normal distribution (based on variance-covariance matrix of the allometric model
developed at step 1.6, and model parameters);

2.2. defined a vector containing one error term (&;) sampled at a time from a normal
distribution with the standard deviation equal to the residual standard error of the
allometric model (Eq. 5) developed for each kth replication.

2.3. calculate the prediction of each tree (AGB;) in the plot based on the sampled
parameters (from step 2.1) and error (from step 2.2):

(7) AGB; = exp(Bo + B1 - Di + &)
2.4. calculate the predicted plot biomass (AGB;) by aggregation of individual tree
predictions:
(8) AGB; = X2, AGB;

Where m = 21 is the total number of trees in the plot.
3. Step 2 was repeated for J times. For each kth replication we calculated:

3.1. the mean plot AGB over J repetitions:
1

9) AGBy = Tz{zlA‘ GB,
3.2. standard error of the mean:
~ 1 — —_—
(10) & = \/J_—lz}zl(AGBj — AGBy)?

3.3. relative bias:
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AGBy—1)

(11) Biasg(%) = ( -100

where p is the plot AGB, based on true population parameters (plot true AGB); was
calculated by applying the model based on true parameters (see Eq. 2) with a correction
factor (Baskerville, 1972; Goldberger, 1968). The model was applied to all m = 21 trees in
the plot and then their biomasses were aggregated. RSE is the residual standard error and can
take two values, 0.2 and 0.3 (see section 2.2):
(12) n= R (exp(211+55) . D23
4. Steps 1-3 were repeated for K times (K = 5000) and we reported further:

4.1. Standard deviation of relative bias, which is reported here as a measure of prediction

accuracy (Pa):

(13) P, = éZEzl(Biask — Bias)?

Where Bias = %Zﬁzl(Biask)

4.2. The mean coefficient of variation of predicted biomass, which is reported as a
measure of prediction precision (Pp):
_1¢K _Ok |

Where Gy is the standard error of predicted biomass (Eq. 10); AGBy is the mean predicted
plot biomass (Eq. 9).

2.6. Prediction accuracy and precision

The prediction accuracy and precision represent two qualitative concepts that are used to
describe the performance of an estimator (Walther and Moore, 2005). Prediction accuracy, as
used in this paper, is defined as the overall distance between predicted value and the true
value (Walther and Moore, 2005). Since in our simulation design we determined not one, but
5000 values showing the distance between predicted AGB (at plot level) and true AGB (at
the plot level), the accuracy was reported as standard deviation of these 5000 values
(Standard deviation of relative bias, Pa, Eq. 13). Furthermore, the prediction precision is a
measure of ‘the statistical variance of an estimation procedure’ (Walther and Moore, 2005)
which is a type of uncertainty caused by random variation. In this study, the precision was
reported as the mean coefficient of variation of predicted biomass at plot level (Pp) in Eq. 14.

2.7. Data processing

The simulation analysis was performed in R (R Core Team, 2017) with the RStudio interface
(RStudio Team, 2016) and using the packages “MASS” (Venables and Ripley, 2002) and
“rtruncnorm” (Mersmann et al., 2018).

3. Results

3.1. The effects on standard errors of model parameters and on goodness of fit

The simulation results demonstrate that with increasing D-range, the standard errors of model
parameters (SE(Bo) and SE(B1) in Eq. 5) decreased while the R? values (Eq. 6) increased (Fig.
3 and Annex 1). The effects were stronger when the length of D-range increased towards
small trees (Fig. 3, S1— S3) compared to large diameters (Fig. 3, B1— Bs). Increasing the
length of D-range, the largest reduction of SE(Bo) and SE(B1) and the largest increase of R?
occurred for normal distribution on In(D)-range (Fig. 3, d1-d3). Although in Fig. 3 the results
are shown only for n = 100 and RSE = 0.3, the results for the other values of sample size and
RSE (Annex 1) show a similar pattern.
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(a) Uniform distribution on D-range (b) Normal distribution on D-range (c) Uniform distribution on In(D)-range (d) Normal distribution on In(D)-range
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Fig. 3. The standard errors of model parameters SE(Bo) and SE(f31), and the model goodness
of fit (R?) of log-log transformed allometric biomass model (Eq. 5), shown for different types
of distribution of the sample trees and different D-intervals. Note: Each column (a-d)
represents a different type of distribution of the sample trees (for more information see
section 2.3.4); SE(Po) is the standard error of the intercept in Eq. 5 (see steps 1.4 and 1.5 in
section 2.5); SE(B.) is the standard error of the slope in Eq. 5 (see steps 1.4 and 1.5 in section
2.5); R? is the coefficient of determination (Eq. 6). Each of the values presented in this plot
(for SE(Bo), SE(B1) and R?) was calculated as the mean over 5000 replications (see section
2.5). In this graph is presented the data only for models based on one value of sample size (n
= 100) and one value of residual standard error (RSE = 0.3).

The standard errors of model parameters were affected by both RSE and sample size.
However, the model goodness of fit (R?) was affected mainly by the RSE with only a very
minor effect from the sample size.

Increasing the RSE by 50% (from 0.2 to 0.3) the standard errors of model parameters
(intercept and slope) increased by the same 50% rate (SD = 0.31%; calculated based on
values presented in Table A1, and Table A2 in Annex1) whereas the effect on R? was
dependent on the length of D-range and on the type of distribution (Fig. 3). For models based
on smaller D-range lengths and on trees sampled over a normal distribution (on either D or
In(D)), the effects of increasing RSE on R? were stronger.

Increasing the sample size by 50% (from 100 to 150 trees), the standard errors of model
parameters decreased, on average, by 18.7% (SD = 0.36%) while increasing the sample size
by 1000% (from 100 to 1000) the standard errors decreased by 68.7% (SD = 0.33%).
Nevertheless, increasing the sample size by 50% (from 100 to 150) the R? values increased
by an average of 0.07% while increasing the sample size 10-fold (from 100 to 1000), the R?
values increased only by an average of 0.18% (Annex 1).

3.2. The effects on biomass prediction accuracy

As expected, residual standard error (RSE) was an important driver of prediction accuracy
(expressed as standard deviation of relative bias, Pa, EQ. 13). A low Pa value means that the
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distance between predicted AGB and the true AGB is small, and therefore the model is more
accurate. Increasing RSE from 0.2 to 0.3 (therefore, by 50%), Pa increased by approximately
the same ratio (i.e. by an average of 51.4%, SD = 2.3%; the mean and SD were calculated on
96 Pa values presented in Table A4, Annex1, resulted from 8 D-intervals, 3 values of sample
size and 4 types of distribution). The effect was stronger for models based on shorter D-range
lengths (Fig. 4 and Table A4 in Annex 1). Sample size was also an important factor affecting
biomass prediction accuracy, although its effect was weaker compared to that of RSE.
Increasing the sample size by 50% (from 100 to 150), Pa decreased by an average of 18.4%
(SD = 1.2%; calculated on 96 values in Table A4). Increasing the sample size by 1000%
(from 100 to 1000) the average decrease of Pa was 67% (SD = 0.8%; calculated on 96 values
in Table A4). These effects were very similar to those found for standard errors of model
parameters.

(a) Uniform distribution on D-range (b) Normal distribution on D-range (c) Uniform distribution on In(D)-range (d) Normal distribution on In(D)-range

n =100 (a1) RSE=0.2 |[ n=100 (b1) RSE=0.2 || n=100 (c1) RSE=0.2 || n=100 (d1) RSE =0.2

oIl

n =150 (a2) RSE=02 |[ n=150 (b2) RSE=02 || n=150 (c2) RSE =0.2 =150 (d2) RSE =0.2

1111 \HH 1117

[T1111

o\o_ =1000 (a3) RSE=0.2 |[ n=1000 (b3) RSE=0.2 || n=1000 (c3) RSE=0.2 || n=1000 (d3) RSE =0.2
<
n
© 4 -
2
[
2 2 =
© —— F o o Py
e ,ITTTTTTT i e e ol o il o ol s I s o e B
o n =100 (ad) RSE=03 || n=100 (b4) RSE=0.3 || n=100 (c4) RSE=0.3 || n$100 (d4) RSE=0.3
S ° o
kS o
5) S g T T = -
° :
S 2]
°
=
© | | |
h ° ‘
n =150 (ab) RSE=03 |[ n=150 (b5) RSE=03 || n=150 (c5) RSE=03 || n=150 (d5) RSE=0.3

A T
0 — ! L |
n = 1000 (a6) RSE=0.3 |[ n=1000 (b6) RSE=0.3 || n=1000 (c6) RSE=0.3 || n=1000 (d6) RSE =03
6 —
4
27 - 3 i ¥ -
ATTTITIT O TITITIT ) [ITTITTT Femalbi
T 1T T T T T 1 T T T T T T 1 1 T T T 1 T 1T T T T T 1
S3 S2 St Imn By Bz Bz lmax S3 S2 St Imn By Bz Bz Imax S3 Sz St Imin By Bz Bz Imax S3 Sz St lmn Bi Bz B3 Imax

D-intervals

Fig. 4. The standard deviation of relative bias, describing prediction accuracy (Pa, EQ. 13, see
section 2.5), for different sampling characteristics. Note: Each column (a-d) represents a
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different type of distribution of the sample trees (for more information see section 2.3.4); The
rows (1 to 6) represent a combination of sample size (n = 100, n = 150 and n = 1000, see
section 2.3.1) and residual standard error values (RSE = 0.2 and RSE = 0.3, see section 2.2);
Inside each plot are presented the Pa values for each D-interval (in cm, S1=[0, 60]; S2=[10,
60]; Sz =[20, 60]; Imin = [30, 60]; B1 = [30, 70]; B2 = [30, 80]; Bz = [30, 90]; Imax = [0, 90],
see Table 1).

The variability of Pa values was lowest for uniform distribution on D-range (Fig. 4, al-a6).
That means the models which were constructed based on trees which were selected following
a uniform distribution on D-range produced more stable prediction accuracies across model’s
D-range. In other words, sampling a constant number of trees for each D-class makes the
allometric models less vulnerable to accuracy loss, when just part of model D-range is used
for prediction.

However, models that were based on trees selected over uniform or normal distributions on
In(D) range (Fig. 4, c1-c6 and d1-d6), produced larger Pa values for S; — Sz intervals
compared to B1 — Bs. The cause of these differences is how well the model was informed for
D =30 to 60 cm. We mentioned already (section 2.3.4) that the uniform or normal
distribution on In(D) range (see Fig. 1, c1, c2, d1 and d2) assume that a larger number of
small trees are selected compared to large ones. Therefore, the models based on uniform and
normal distribution on In(D)-range (Fig. 4, c1-c6 and d1-d6) are better informed on their left
side of D-range (towards small trees). However, the models based on S1— Sz (in Fig. 4, c1-c6
and d1-d6) used their right-side of D-rage for prediction, which was not so well informed
(e.g. models based on S3 were developed for D = 0 to 60 cm and were used to predict
biomass of trees with D = 30 to 60 cm), producing less accurate predictions. This is opposite
to models based on By — Bz which used their well-informed part of D-range (e.g. models
based on B3z were developed for D = 30 to 90 cm, and, used to predict biomass of trees with
D =30 to 60 cm), and, therefore, produced more accurate AGB predictions.

Because the models based on S; — Sz and B1 — Bz intervals used just part of their D-range for
prediction (e.g. the model based on S3 although being developed for D =0 to 60 cm, was
used to predict the biomass of trees with D = 30 to 60 cm), would be biased to compare the
prediction accuracy of Imin With S1 — Sz (or B1 — B3). Since the prediction accuracy is poorer
at the margins of D-range (of the model) it is to be expected that Pa values increase slightly
(for models based on S; — Sz and By — Bz). However, both Imin and Imax based models, use the
central portion of D-range for prediction and therefore these two can be compared to assess
how increasing the length of D-range affects prediction accuracy. Increasing the range from
Imin to Imax the prediction accuracy did not improve, but had the opposite effect, especially for
distributions on In(D)-range (Fig. 4, c1-c6 and d1-d6) for which the Pa value increased by up
to 98%. For models based on uniform and normal distribution on D-range (Fig. 4, al-a6 and
b1-b6) the increase was much smaller, of up to 6.6%.

We showed the effects of increasing D-range length from Imin to Imax When the number of
observations remained constant. Therefore, although the models based on Imax show greater
R? and smaller standard errors of model parameters (Fig. 3), their prediction accuracy was
poorer compared to models based on Imin (Fig. 4, see Imin VS. Imax). This suggests that the
absolute number or density of observations for each part of D-range (or for each diameter
class) is important. For the specific D-range of the plot data (i.e. D = 30 to 60 cm), the
models based on Imax had a lower density of observations, compared to models based on Imin,
since the same number of observations had to be distributed over a wider D-range (in case of
Imax based models). These results are important, because they show that is not the model
fitting and the standard errors of model parameters that matters for prediction accuracy, but
the RSE (in log-log scale) and the absolute number of trees across the D-range.
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3.3. The effects on biomass prediction precision

Although increasing the length of D-range produced a decrease of standard errors of model
parameters and an increase of R? (Fig. 3), this was not reflected in the precision of biomass
prediction (here, expressed as mean coefficient of variation of predicted biomass, Pp, in EQ.
14). The Pp did not decrease with the increasing D-range and in some cases even increased
slightly (Table 2). When comparing the Pp of models based on Imin VS. Imax, the results were
found to be highly consistent when trees were sampled on D-range (differences of up to

0.1%). However, when the trees were sampled on In(D)-range the differences increased

slightly up to 1.9% (Table 2).

Table 2
The mean coefficient of variation of predicted biomass (Pe, Eq. 14)

D Uniform Normal Uniform Normal

inter | distribution on D- | distribution on D- | distribution on distribution on

val range range In(D)-range In(D)-range
n=1 [n=1 | n=10 | n=1 |n=1 {n=10 |n=1 [n=1 | n=10 [n=1 | n=1 | n=10
00 |50 |00 00 |50 |00 00 |50 |00 00 |50 |00

RSE =0.2

S3 20.3 |1 20.2 | 20.2 |20.3|20.3 |20.2 |20.5|20.4 |20.2 |20.7 |20.5|20.2
2 9 2 5 0 2 3 1 3 8 4 6

S2 20.3 | 20.2 | 20.2 |20.3|20.3 |20.2 |20.4|20.3|20.2 |20.5|20.3]|20.2
1 4 1 2 2 0 4 3 2 4 8 2

S1 20.3 1 20.2 | 20.2 |20.3 |120.3 (20.2 |20.3|20.2|20.2 |20.4 |20.3|20.2
0 6 0 0 0 2 9 9 0 4 4 2

Imin | 20.2 | 20.2 | 20.2 |20.3 |20.2 | 20.2 |20.2 | 20.2 | 20.2 |20.2 | 20.2 | 20.2
7 5 0 0 5 1 8 8 0 6 3 0

B1 20.2 | 20.2 | 20.2 |20.2 | 20.2 | 20.2 | 20.2 | 20.2 | 20.2 |20.2 | 20.2 | 20.2
8 7 1 8 5 1 5 6 1 6 7 1

B> 20.2 | 20.3 | 20.2 |20.3|20.3 |20.2 |20.2|20.2|20.2 |20.2|20.2]|20.2
9 1 1 9 1 2 9 6 0 5 5 1

Bs 20.3 1 20.3 | 20.2 |20.4|20.3|20.2 |20.2|20.2|20.2 |20.3|20.2]|20.2
5 2 1 5 5 3 7 7 1 0 7 1

Imax | 20.2 | 20.2 | 20.2 | 20.3 | 20.2 | 20.2 | 20.4 | 20.3 | 20.2 |20.6 | 20.4 | 20.2
8 5 1 1 7 1 9 6 0 4 9 5

RSE =0.3

S3 30.9 | 30.8 | 30.7 |31.0|30.8 |30.7 |31.3|310|30.7 |316 |31.3]30.7
4 2 2 7 2 3 0 2 4 8 6 8

S2 30.9 | 30.8 | 30.7 |30.9 308|307 |31.11309]30.7 |31.2|31.030.7
1 2 1 6 8 0 8 8 3 8 1 5

St 30.8 | 30.8 | 30.7 |30.9 |30.8 |30.7 |30.9 308|307 |31.0|30.9 |30.7
5 1 2 0 8 1 8 9 2 8 4 2

Imin | 30.8 | 30.7 | 30.7 |30.8 |30.7 | 30.6 |30.8 |30.8|30.7 |30.8|30.8|30.7
0 8 1 1 8 9 5 0 1 9 3 0

B1 30.8 | 30.7 | 30.7 |30.9 | 30.8 |30.7 |30.8|30.8|30.7 |30.8|30.8]30.6
6 5 0 0 5 0 9 1 2 5 0 8

B> 30.9 | 30.8 | 30.6 |31.0|30.8 |30.7 |30.9|30.7|30.6 |30.9 |30.8]30.7
5 3 9 4 3 3 4 7 9 3 3 0
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Bs 30.9 | 30.8 | 30.7 |31.0 | 30.9 | 30.7 |30.9|30.8|30.7 |30.9 |30.8|30.7
3 8 2 9 8 3 2 1 0 6 8 2
Imax | 30.8 | 30.7 | 30.7 |30.7|{30.7 |30.7 |31.2 {309 |30.7 |[31.4 |31.1 |30.7
2 8 1 9 6 0 2 9 3 4 4 6

In Table 2 can be observed that Pp is highly related to residual standard error (RSE). We
mentioned (section 2.2) that RSE in log-log scale can be interpreted as a form of coefficient
of variation for original scale. The slightly larger Pp values than 20% and respectively 30%
were caused by the uncertainty in model parameters, since the Pp values contain the errors
propagated from both model parameters and residual variance. Therefore, RSE was the main
driver of model prediction precision, with a very small share produced by uncertainty in
model parameters (up to 5.3%). Increasing the RSE by 50% (from 0.2 to 0.3), Pp increased on
average, by 52.1% (SD = 0.2%; the mean and SD were calculated on 96 Pp values, presented
in Table 2, for each value of RSE), regardless of sample size, D-range and distribution type.
However, sample size, although greatly influencing prediction accuracy, had only a minor
effect on prediction precision. Since increasing the sample size has direct effect on the
standard errors of model parameters (producing a decrease in standard errors) and since the
propagated errors from model parameters represent only a very small share in Pp value (up to
5.3%), it is to be expected that sample size will have a insignificant effect on prediction
precision. Increasing the number of observations by 50% (from 100 to 150), the Pp decreased
by 0.33% (SD = 0.29%) while increasing by 1000% (from 100 to 1000) the Pp decreased by
0.81% (SD = 0.56%). However, both these effects were not significantly different from zero
(p =0.26 and p = 0.16 respectively).

4. Discussion

4.1. The drivers of biomass prediction accuracy and precision

The effects of tree sampling characteristics on biomass prediction accuracy and precision are
intricate and can sometimes be misleading. In this paper we show which characteristics of the
sampling strategies are important for improving model’s prediction accuracy and precision.
We found that the natural variability of AGB-D relationship (expressed by RSE) was the
main driver of model’s prediction accuracy and precision (an increase of RSE by 50%
produced a roughly similar effect on prediction accuracy and precision). Increasing the
sample size was important for improving the accuracy but not so important for improving
precision. The effect of sample size on prediction accuracy depended on RSE and D-range,
and was a function of 1/+/n, confirming previous work (Chave et al., 2004; Picard et al.,
2012).

We showed that a wider D-range would improve the model fit and standard errors of model
parameters (Fig. 3). This may be helpful for any statistical test associated with allometric
models, since reduction of standard errors may produce a stronger effect against null
hypotheses (e.g. t-test, F test) (Dutca et al., 2018b). However, we also showed that, although
the model based on a wider D-range had a better fit, the prediction accuracy was poorer (Fig.
4, see Imin VS. Imax). This result, which may be surprising, can be explained by another
important factor which is influenced by the distribution of trees across D-range, which is the
density of the observations across the D-range. If the number of observations remain
constant, increasing the D-range, requires that the density of observations across D-range is
reduced, with negative consequences on AGB (aboveground biomass) prediction accuracy.
Often, increasing the range of D is achieved by merging different datasets for different D-
ranges. In this case, the density of observations across the D-range is not reduced and the
resulting increase of sample size increases prediction accuracy.
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Furthermore, Roxburgh et al. (2015) suggested that the optimal distribution of
sampled trees to develop allometric models is the one that matches the distribution of trees to
which the model is applied. Although our plot data appears to be lognormally distributed
(Fig. 2), the greatest accuracy (lowest Pa value) was obtained for models based on uniform
distribution of D-range and not for models based on lognormal distribution on D-range (Fig.
4, al-a6 vs. d1-d6), as suggested by the authors. Since our plot D data only appeared to be
lognormal, we checked this hypothesis by generating a new D dataset of 1000 observations
lognormally distributed on Imax interval. We investigated whether the model based on
uniform distribution (developed for the same Imax range) produced lower Pa and Pp values
(when predicting AGB of this new D dataset of 1000 observations) than model based on
lognormal distribution. The results confirmed that uniform distribution on D-range produced
lower Pa and Pp values (model based on uniform distribution: Pa = 3.2% and Pp = 30.8%);
model based on lognormal distribution: Pa = 6.3% and Pp = 31.4%). We repeated the
comparison, for models based on uniform vs. normal distribution on D-range, when
predicting AGB of 1000 trees normally distributed. Again, the model based on uniform
distribution produced lower Pa and Pp values compared to model based on normally
distributed sample trees (model based on uniform distribution: Pa = 3.5% and Pp =30.8%;
model based on normal distribution: Pa = 3.6% and Pp = 30.9%). Therefore, our results show
that models based on uniform distribution of the sample trees on D-range perform better
(produce more accurate and precise predictions), regardless of distribution of the trees to
which the model is applied.

4.2. Small trees are more informative in allometric models

We showed that, for models based on similar number of observations and similar length of D-
range (and similar residual standard errors in logarithmic scale), if the models included
smaller diameter trees, the standard errors of model parameters were reduced while R? values
were greater (e.g. see Sz vs. Bz in Fig. 3). Therefore, it is suggested that small trees are more
informative in allometric models, compared to large trees. However, this seemingly
anomalous finding can be explained by (or represents the indirect effect of) a commonly
heteroscedastic nature of relationship between biomass and tree diameter. The variance in
allometric models is not constant and increases with D (Zianis, 2008). As a result, to fit a
nonlinear model the observations are usually weighted inversely to residual variance (the
lower the residual variance, the larger the weight and vice-versa) (Dutca et al., 2019).
Logarithmic transformation on the other hand, performs a similar function: it re-scales data so
that units are stretched for small values of variables (D and AGB) and compressed for large
ones. Therefore, log-log transformation more heavily weights the influence of small trees
over large ones, to ensure that residuals are comparable residuals across predictor range (i.e.
homoscedasticity). As the lowest residual variance usually occurs for the smallest D values
(Zianis and Mencuccini, 2004), small trees are more heavily weighted and have a greater
influence on regression models than larger trees. Therefore, small trees impart more
information to models, and exert greater overall influence over the standard errors of model
parameters and goodness of fit. Given the fact that small trees require less effort for biomass
measurement, they are highly cost-effective to sample. Nevertheless, we showed that,
although the models that included small trees produced smaller standard errors of model
parameters and larger R? values, those effects were not significantly reflected in biomass
prediction performance (as indicated by the accuracy and precision of models, Fig. 4 and
Table 2).

4.3. Selection criteria of allometric models
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Goodness of fit (R? of linear model in log-log scale) is often reported with allometric biomass
models, being recommended as criterion for model selection (Sanquetta et al., 2018). The
assumption is that a model with the best fit will reasonably predict the biomass of other trees.
Our results confirm that R? was not affected by sample size (Sanquetta et al., 2018).
However, we showed that R? was a poor indicator of model prediction performance with
respect to both accuracy and precision. Plotting the R? against Pa (Fig. 5, a) and Pp (Fig. 5, b)
we observed no clear relationship between R? and model prediction accuracy or precision.
Although not sensitive to changes in sample size, R? was sensitive to variations of D-range
(Fig. 3 and Annex 1). The maximum R? values occurred when D-range length was also
maximum (i.e. Imax, See Fig. 3) and when distribution of sampled trees was uniform on In(D)-
range (R? = 0.998, Table A3, Annex 1). However, we showed that the length of D-range did
not affect the prediction accuracy nor precision, and that actually the models based on trees
sampled along a In(D)-range produced poorer prediction accuracies. Therefore, these findings
suggest that R? may not be a good indicator of model prediction performance.
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Fig. 5. The relationship between model’s goodness of fit (R?) and prediction accuracy (Pa,
%) and precision (Pp, %). Note: (a) The relationship between standard deviation of relative
bias (Pa, Eq. 13) and model’s R? (Eq. 6); (b) The relationship between mean coefficient of
variation of predicted biomass (Pp, Eq. 14) and model’s R? (Eq. 6); The values plotted are

from Table A3, Table A4 (Annex 1) and Table 2.

4.4. Limitations of the study

Our study has the following limitations. First, the conclusions are only valid if the
assumptions hold that heteroscedasticity is removed by logarithmic transformation and that
errors are normally distributed in log-log scale. Second, the study was limited to AGB-D
relationship; therefore, the conclusions should not be inferred to other types of relationships.
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Third, this study did not consider the uncertainty produced by differences between plots.
Fourth, we assumed that the diameters of trees in the inventory (plot) dataset were always
within the D-range used to construct the model. We did not investigate the consequences of
predicting AGB of trees outside the range of diameters used to construct the models.

4.5. Recommendations:

(1) Select a constant number of trees for each D class (use a uniform distribution of sample
trees). We showed that the models based on uniformly distributed sample trees over D-
range produced more accurate AGB predictions, regardless of distribution of inventory
dataset. Also, the variations in prediction accuracy across D-range were minimal.

(2) Avoid using R? as criterion for model selection. We showed that R? was a poor indicator
of model prediction performance.

(3) Use strategies to avoid unnecessary large levels of RSE in allometric models. Because
RSE is indicative of the intrinsic AGB variability for any given D, it cannot be naturally
reduced. However, because RSE was a key driver of both prediction accuracy and
precision, we recommend adopting strategies that can help reducing unnecessary large
levels of AGB variability, such as: (i) avoiding using generic allometric models, where
species effect is ignored and use species-specific allometric models instead; (ii) test and
include additional predictors in the models that may explain part of the residual variance,
such as tree height, crown diameter and wood density.

(4) Because the residuals represent the most important factor influencing model performance,
we recommend that residuals should always be checked, paying special attention to
normality and homogeneity of variance.

5. Conclusions

The key conclusions drawn from this study are as follow: (i) residual variance was the most
important driver of model’s prediction accuracy and precision; (ii) increasing the sample size
improved prediction accuracy (although its effect was weaker than that of residual standard
error), but had negligible effect on prediction precision; (iii) increasing the length of D-range,
although improving both the goodness of fit and standard errors of model parameters, did not
affect prediction accuracy nor precision; (iv) distribution of sampled trees was important for
prediction accuracy; we found that uniform distribution of D-range was optimal, regardless of
the distribution of the inventory dataset, (v) R? was not a good indicator of prediction
performance of the allometric model, and (vi) small trees were more informative in allometric
models, because of inherently heteroscedastic variance. However, the effect on the overall
prediction performance of the model was negligible.
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1 Site description data

1.1 Required variables

Table 1.1 Variables of the site summary information

Names Unit Description
SitelD - SitelD is for identifying the plot of the forest.
ClimatelD is for identifying the regions. Several sites might
ClimatelD - belongs to a same ClimatelD, which means that they share the
same weather condition.
: Latitude of the plot in decimal unit, WGS84 (World Geodetic
Latitude degree
System 1984).
Lonaitude dearee Longitude of the plot in decimal unit, WGS84 (World Geodetic
g g System 1984).
The elevation of the site. This variable is optional. If possible,
Elevation m providing the aspect and slope of the site will also be helpful in
checking data and model output.
SoilTvoe ] Classification based on soil textures. For instance, sand, loam,
200D light clay, etc.
SoilDepth mm Thickness of soil or ecosystem rooting depth.
Soil property. Field Capacity is the amount of soil moisture or
FieldCapacit nm water content held in the soil after excess water has drained away
pacity and the rate of downward movement has decreased. The value
range is 0 t01000.
Soil property. Permanent wilting point or wilting point is defined
WiltingPoint mm as the minimal amount of water in the soil that the plant requires
not to wilt. The value range is 0 to 1000.
Classification based on site fertility. This column can be replaced
by site index, site class, site form, or any other phytocentric and
SiteType ) geocentric indicators of forest site productivity. If using site

index, please indicate the reference age by changing the name of
the variable. For instant, ‘Hdom 100’ means the dominant height
at age 100.

PREBAS do not require Longitude and Latitude as inputs. However, the location information
is essential in collecting useful data and information from other databases in both model

calibration and application.
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SoilType is used for gap-filling and validating the FieldCapacity and WiltingPoint records.
FieldCapacity and WiltingPoint can be estimated based on the soil texture (SoilType).

1.2 Data format

Site description data should be provided in format of tables like csv files (comma delimited).
Below an example of the site description table :

SitelD | Clim | Latitude Longitude | SoilType Soil | FieldC | Wilt | Site

atel Dept | apacity | ing | Typ
D h Poi |e
nt
1 1 39.33902 | -9.21183 | Loamy Sand | 1275 | 0.25 0.15 | 2
2 1 39.33902 | -9.21183 | Loamy Sand | 1275 | 0.25 0.15 |2
3 1 39.33891 | -9.22342 | Sand Loam | 1275 |0.305 |0.18 |2
4 1 39.33891 | -9.22342 | Sand Loam | 1275 |0.305 |0.18 |3
5 1 39.33891 |-9.22342 | Sand Loam | 1275 |0.305 |0.18 |2

19 14 39.314407 | -8.909976 | Sand Loam | 1275 | 0.305 |0.18 |1

20 14 39.314329 | -8.92157 | Sand Loam | 1087 | 0.305 |0.18 |2

2 Weather data
2.1 Required variables
Table 2.1 Variables of the weather input for PREBAS

Names Unit Description

ClimatelD is for identifying the regions. Several sites
might belongs to a same ClimatelD, which means that

ClimatelD | - they share the same weather condition. (Same with Table
1.1)
Date was separated into Year, Month, Day because the

Year - data format for different operation systems could largely
differ.

Month - -
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Day - -

PAR mol PPED m-2 d-1 Daily sum of photosynthetic photon flux density above the
canopy.

TAIr °C Daily mean air temperature

VPD kPa Daily mean vapour-pressure deficit

Precip mm d-1 Daily sum of precipitation

CO?2 opm Daily mean CO2 concentration. If this column is missing,

PREBAS will use the global average daily value.

PAR (daily sums of photosynthetically active radiation) is seldom provided in global climate
databases. However, it can be easily calculated from solar radiation (shortwave radiation)
from established empirical relationships. The ratio of PAR to broad-band solar radiation
varies from 0.4 to 0.6, and is nominally taken to be 0.44 or 0.5 when no local data for
validation. Most meteorological datasets include solar radiation measurements.

2.2 Data format

Weather inputs should be provided in format of tables like csv files (comma delimited) or
data.table objects in R. If many regions include long duration of the record and the combined
file has millions of rows, we suggest to make each climate 1D as an independent file. Then
name the files in a uniform and explicit form. For instance, “ClimateID 1 1970 2005.csv”
means that the climatelD is 1, and observations include the years from 1970 to 2005. Below
an example of the weather input table :

ClimatelD Year Month  Day PAR TAIr VPD Precip CO2

1 1970 1 1 28.23 19.83 1.04 0 325.04
1 1970 1 2 28.77 1941 112 10 325.04
1 1970 1 3 28.81 16.99 1.01 0 325.04
1 1970 1 4 16.95 1740 0.97 0,2 325.04
1 2005 12 30 28.77383 19.52 1.14 0 380.9
1 2005 12 31 29.14447 21.015 1.28 0 380.9

3 Forest inventory data

3.1 Required variables
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Based on the stand structure, PREBAS simulates forest dynamics at stand-level or layer-level
(size-class) level. Thus, simulations of pure even-aged forest require stand average
information. For the forest with mixed tree species or multiple layers, the average
information for each layer or species is required.

Table 3.1 Variables of forest inventory data for PREBAS

Names Unit Description

SitelD - Identifying the plot. (Same with Table 1.1).

Year - The year when the forest inventory was implemented.
Identifying coppice by Indicating which rotation the

Rotation - record belongs. 1 = first rotation, 2 = the second
rotation.
NoThin = No thinning was implemented this year;
BeforeThin = Thinning was implemented this year and

Thinning - this record is the measurement before thinning;
AfterThin= Thinning was implemented this year and
this record is the measurement after thinning

nLayers - Number of layers in the plot. (Same with Table 1.1)
Identifying which layer this row belong. 1 = the 1%
layer, 2 = the 2" layer, etc.

Layer -
For even-aged pure forest, both nLayers and Layer
equal 1.

Species - Tree species of this layer.

Age yr Average age of trees in this layer.

Height m Average height of trees in this layer.

DBH cm Ayerage DBH (Diameter at Breast Height) of trees in
this layer.

BasalArea m? hat Total basal area of trees in this layer.

Density ha Number of trees in this layer.

CrownBaseH m Average height of the crown base in this layer.

CrownWidth m Average crown width in this layer.
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CrownLength m Average crown length in this layer.
Volume m3 hat Layer volume in this layer.
W_Stem kg DM ha'! Stem biomass in this layer.
W_Foliage kg DM ha! Foliage biomass in this layer.
W_Branch kg DM hal Branch biomass in this layer.
W_FineRoot kg DM ha! Fine root biomass in this layer.
W_CoarseRoot kg DM ha? Coarse root biomass in this layer.

Age, Height, DBH, and all the others variables concerned in the table are the average of the
layer or size-class. For even-aged forests, the whole stand is referred as one layer. The
variable can be estimated by choosing the medium tree of the layer, or by taking the basal-
area-weighted average of all the trees in the layer. For natural uneven-aged forests with
mixed species and complex structures, individual-tree level measurements are also needed.

Biomass information are only used in PREBAS calibration. After the model being calibrated
the application requires only basic inventory variables such as Height, DBH, and Density.

Forest inventory might exclude biomass investigation. Thus, destructive sample data are
needed as described in section 4.1.

3.2 Data format

Forest inventory data should be provided in format of table like csv files (comma delimited).
Below an example of the forest inventory table :

. . - nLayer . . Basal w W_Coa
SitelD Year Rotation | Thinning s Layer | Species Age Height DBH Area ... neR rseRoot
1 1970 1 NoThin 1 1 5;:)%1%’);“5 4 104 7.8 5174 | ... 27 1708
1 1971 1 NoThin 1 1 ;‘;ﬁ:?’u’gus 5 125 9.4 7457 | ... éé 2532
1 1972 1 NoThin 1 1 ;‘ifbi:fupsms 6 141 111 20'40 ;g 5703
1 1973 1 NoThin 1 1 gllj')(;)e:.:lyupstus 7 154 13 is.gs ii 5332
1 1974 1 NoThin 1 1 gEI‘;%ﬂ?’upst“S 8 165 14 ée'm z; 6866
1 1975 1 NoThin 1 1 gEluocbﬂlyupst“s 9 171 152 ;8'96 ;‘i 0622
1 1976 1 NoThin 1 1 ;‘gcb"ﬂlyupstus 10 1856 16 51'21 23 12056
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20 2002 1 NoThin 1 1 Eucalyptus | 35 31.6 254 55.01 38
globulus 6 32
8 84322

4 Additional useful data
4.1 Destructive sample data

Destructive sample data here means individual-tree level biomass data. The information are
essential for PREBAS calibration. Destructive sample data can be an independent dataset, but
basic site information are still needed.

Table 4.1 Variables of destructive sample data. The default unit of the biomasses is kg dry
matter (DM) per tree (kg DM).

Names Unit Description

D cm Diameter at breast height.
H m Tree height.

Hc m Height of the Crow base
Cw m Crown width

Ac m? Cross-sectional area at crown base.
Wstem kg DM Stem biomass

Wholiage kg DM Foliage biomass

Waranch kg DM Live branch biomass
WEineRoot kg DM Fine root biomass

W oarseRoot kg DM Coarse root biomass

4.2 Classification of site fertility

The suitable method of site evaluation varies with tree species and regions. When the
phytocentric and geocentric indicators of forest site productivity is missing in Table 1.1.
Please provide Age and Height information of the dominant trees for each plot. Then the site
index can be calculated.

4.3 Eddy covariance data
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Eddy covariance data are required for the calibration of PREBAS. Although many global
eddy covariance network are providing open access data, those free datasets only cover
limited tree species and regions. Thus, eddy covariance data could be considered as optional
depending on the tree species and regions.

Table 4.2 Data requirement for the eddy covariance site. (Shading means same variables with
previous tables)

Variable Abbreviation unit time Data type
step

Soil Data

soil depth SoilDepth mm - Site-specific

field capacity FieldCapacity mm - Site-specific

wilting point WiltingPoint  mm - Site-specific

Soil water content - mm Daily Measurement

Canopy Information

Fraction of Absorbed faPAR - Daily or  light
Photosynthetically Active Yearly interception
Radiation

Meteorological Data

photosynthetic photon flux PAR mol Daily weather
density PPFD m"

2 d-l
Air Temperature TAIr °C Daily weather
Vapour pressure deficit VPD kPa Daily weather
Precipitation Precip mm Daily weather
Flux Data
Gross primary production GPP gCm?  Daily Eddy Tower
Evapotranspiration ET mm Daily Eddy Tower
Quality Flag - % Daily Eddy Tower
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Extra Information could be useful, including 1) Forest inventory data of the site
(remeasurements of DBH, basal area, height, etc), 2) Soil or canopy nitrogen information,
e.g. C/N, 3) Shrubs and ground vegetation, e.g. LAI, chamber measurements.

fapar is either measured or calculated based on LAI (leaf area index). It changes with canopy
growth or thinnings. Quality Flag is assigned to each day to indicate percentage of measured
(non-gapfilled) and good quality gap-filled half-hourly data used to calculate the daily value.
We prefer the nighttime partitioning method for GPP records.

4.4 Soil carbon storage

PREBAS can link the soil carbon model Yasso to simulate the dynamics of soil carbon, and
also the ecosystem carbon fluxes. In this case, the information about soil carbon storage of
the stand is needed. The data are optional because it’s difficult to obtain.
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