1. Data about the study programme

1.1 Higher education institution	University Transilvania of Braşov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Silviculture Forest Engineering / Forest Management Planning
	and Terrestrial Measurements
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Forestry for Multiple Purposes / Master in Forest Science

2. Data about the course

2.1 Name of course			Inte	rnational environmen	tal go	overnance and fo	rests (IEGF)	
2.2 Course convenor			Mr.	Mr. Viorel Nelu Bellmondo Blujdea (PhD)				
2.3 Seminar/ laboratory/project convenor			Mr.	Mr. Viorel Nelu Bellmondo Blujdea (PhD)				
2.4 Study year	1 2.5 Semester		1	2.6 Evaluation type	С	2.7 Course status	Content ³⁾ Attendance type ⁴⁾	SC CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which: 3.2	lecture	2	3.3 seminar/ laboratory/ project	-
3.4 Total number of hours in	28	out of which: 3.5	lecture	28	3.6 seminar/ laboratory/ project	-
the curriculum						
Time allocation						hours
Study of textbooks, course suppo	rt, bibli	iography and note	5			38
Additional documentation in libraries, specialized electronic platforms, and field research					15	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays				33		
Tutorial					0	
Examinations					6	
Other activities				0		
3.7 Total number of individual study hours 92						
3.8 Total number per semester						
3.9 Number of credits ⁵⁾ 4						

4. Prerequisites (if applicable)

4.1 curriculum-related	-
4.2 competences-related	-

5. Conditions (if applicable)

5.1 for course development	Course attendance is compulsory
5.2 for seminar/ laboratory/	• -
project development	

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production systems.
Professional competences	 LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in the management of forest ecosystems and technical forest production systems.
	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to the management of forest ecosystems and technical forest production systems.
	Relevance: This aligns with understanding forest governance frameworks, analyzing the drivers of governance at various scales, and applying knowledge of sustainable development principles to manage forest resources effectively. CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and strategic systems.
	 LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector.
	LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector. Palovance:
	The course equips students to analyze and engage with international environmental processes , including climate change, biodiversity conservation, and trade, as well as the roles of governance actors and frameworks in forest management.
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector.
	• LO 1.1: The graduate objectively evaluates the responsibilities and capacities of team members or collaborators.
es	Relevance: Students learn to assess stakeholder roles in forest governance and engage in policy dialogues to support collaborative solutions for suctainable forest management.
petenc	CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects.
al com	• LO 2.3: The graduate can efficiently lead teams and research projects. Relevance:
insvers	The course includes case studies and participatory exercises in decision-making , fostering leadership and teamwork abilities.
Tra	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands.
	• LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice. Relevance:
	The emphasis on global governance processes , science-based decision-making, and adaptation strategies prepares students for evolving challenges in the environmental governance sector.

7. Course objectives (resulting from the specific competences to be acquired)

	-	
7.1 General course objective	•	To familiarize students with principles and fundamentals regarding to forest/forestry
		within the framework of int'l environmental governance and sustainable development.
7.2 Specific objectives	٠	To make students to understand, analyze and operate with forest related governance
		issues at international, regional and local scale;
	٠	To develop student's personal skills related to forest resources and environmental
		governance, as well as sustainable development concepts.

8. Content

8.1 Course	Teaching methods	Remarks
Introduction, course overview	Lecture 1	2 hours
 Natural resources and humanity evolution: past, current and future of anthropog driven impact on Earth; 	genic	
 Fundamentals and principles of environmental governance and sustainable development. 		
Understanding sustainable management of natural resources	Lecture 2	2 hours

1	. Theory of management of natural resources, focus on forest management.		
2	. Forest in the land-water-food-energy nexus		
3	. Access to resources and implications on resource stability		
н	listory and trends in forest advernance	Lecture 3	2 hours
1	. Int'l. regional and national scale of implementation of forest governance requirements		
-	and obligations:		
2	Decision making processes and drivers stakeholder interests and players in forestry		
-	governance.		
2	Role of institutions in forest governance process		
	ciance technicality and monitoring in policy development, implementation and	Locture 4	2 hours
3	ompliance	Lecture 4	2 110015
	Scientific advicant and technical support for policy making		
	Scientific advisory and technical support for policy making;		
2	Scientific tools and instruments used in forest related int i processes;		
3	. Data types, providers and users' capacity needs.		
F	orest governance framework	Lecture 5	2 hours
1	. Processes directly targeting forests and forestry- overview of all forest, forestry and		
	wood/timber int'l processes;		
2	. Focus on key understanding provisions, gaps, strength, trends.		
∧	Ion-forest related forest governance	Lecture 6	2 hours
1	. Indirect effects on forest and forestry from non-forest instruments (e.g. climate change,		
C	ertification, biodiversity/nature conservation, food security, water, soils, natural disasters		
r	eduction, sustainable development);		
3	. Focus on key understanding provisions, gaps, strength, trends.		
F	orest, forestry and wood under climate change regime	Lecture 7	2 hours
1	. Land use, land use change and forestry concept and its evolution under climate change		
	process);		
2	. Understanding the adaptation needs and challenges for forest and forestry sector.		
0	Duantitative commitments in climate change mitigation	Lecture 8	2 hours
1	Forest activities portfolio and GHG mitigation potential effectiveness and impacts		
1	a C sinks and C stocks management (incl. afforestation):		
	b reducing emissions from deforestation and forest degradation:		
	c. substitution and cascading affect of wood:		
	d shallonges of halansing national GHC emissions by not removals on lands and		
	Torestry;		
	e. trade-offs of mitigation by forest: geochemical and biophysical impact of mitigation;		
	f. up-to-date technologies involving wood and forest land (biomass energy and capture		
	carbon and storage, substitution).		
P	racticing mitigation outcome of the forestry portfolio (forest land)	Lecture 9	2 hours
1.	Mitigation by afforestation;		
2.	Emissions from deforestation and forest degradation;		
3.	Method for accoutring additional anthropogenic mitigation by forest management.		
P	racticing mitigation outcome of the forestry portfolio (wood-chain)	Lecture	2 hours
1.	Understanding the four- wood-dimensions: volume, biomass, energy and carbon	10	
2.	Mitigation by harvested wood products		
3.	Substitution by wood biomass of carbon or energy intensive materials		
C	ombating land degradation and desertification	Lecture	2 hours
1.	Analysis and understand the land and soil resources;	11	
2.	Land use balance concept – contribution of forest and trees;		
3.	Net zero land degradation concept;		
4	Land use improvement approaches and practices (incl. afforestation and agro-forestry		
	opportunities).		
F	rameworks for action and innovation in the development of forest resources advernance	Lecture	2 hours
1	Challenges of the change: understanding the barriers and needs for success.	12	
2	Onnortunities for social and economic development by environmental synergies		
2.	Solutions for ensuring success in policy making implementation and compliance		
	estiming environmental supergies on local scale for forestry activities	Lecture	2 hours
	Ton down and bottom up drivers and restrictions	12	2 110015
	rop-uown and bottom -up drivers and restrictions	12	
2.	Dealing with conflictual issues in forestry	1	2 6
S	imulation of a participatory process of decision making on forest governance	Lecture	2 hours
1.	Interactive activity – practicing citizenship and authority on an environmental subject	14	
Biblio	graphy		
1	. Bocken, NMP, Ritalia, P., Huotari, P. 2017. The circular economy: exploring the introduct	ion of the co	ncept

among S&P 500 firms. Journal of Industrial Ecology. 21:487-490

- HALALISAN, A.F., ABRUDAN, I.V., POPA, B. (2018): Forest Management Certification in Romania: Motivations and Perceptions. Forests. ISSN 1999-4907 (Print), DOI: 10.3390/f9070425. Volume 9 (7) 425 (July 2018), pg. 2-16
- HALALISAN, A.F., POPA, B., HERAS-SAIZARBITORIA, I., IORAS, F., ABRUDAN, I.V. (2019): Drivers, perceived benefits and impacts of FSC Chain of Custody Certification in a challenging sectoral context: the case of Romania. International Forestry Review. ISSN 14655489, DOI: 10.1505/146554819826606595, Volume 21, No.2, pg. 195-211.
- 4. Meyer R., 2017. Bioeconomy Strategies: Context, Visions, Guiding, Implementation Principles and Resulting debates. Sustainability9, 1031.
- 5. Relevant scientific and technical documentation to be distributed by the teacher

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of hours	Remarks
NA	NA	NA	NA
Bibliography			

Course material, indicated internet resources.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

National and regional authorities, international organizations, non-governmental organizations, private sector

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage	
		methods	of the final grade	
10.4 Course	• Understanding the theoretical background and principles of environmental sustainability	Exam, Participation in activities	100%	
	Understanding the meaning of forestry governance			
	 Understand the drivers and policy solutions striving to forest resources sustainability 			
	• Advanced understanding of the international processes related to forests			
	 Understanding of the scientific and technical needs for policy making 			
	 Development of own critical understanding and knowledge on the course contents 			
	 Capability to understand differences and weaknesses of an argumentation from environmental sustainability perspective 			
	• Capability to evaluate others' arguments and demonstration			
10.5	NA	NA	NA	
Seminar/	NA	NA	NA	
laboratory/				
project				
10.6 Minimal performance standard				
• Students will be able to understand the principles and fundamentals for sustainable management of natural resources;				
• Students will be able to correctly identify the most likely policy process under which a specific forestry issue may fall;				
Students w	vill be able to correctly identify most likely drivers leading to non-	sustainable forestry in a	given case study.	

This course outline was certified in the Department Board meeting on 27.09 2024 and approved in the Faculty Board meeting on 30/09/2024

(Dean: Academic degree, first name, LAST	(Head of Department: Academic degree, first name, LAST NAME
NAME and signature),	and signature),
Prof. dr. ing. Alexandru Lucian Curtu	Prof. dr. ing. Alexandru Stelian Borz
Dean	Head of Department
Course holder	Holder of seminar/ laboratory/ project
Viorel Nelu Bellmondo Blujdea	NA
Date: 01.10.2024	

<u>Note</u>:

- Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level *choose from among:* BA/MA/PhD.;
- ³⁾ Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the MA level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course)
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 30 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	University Transilvania of Braşov	
1.2 Faculty	Faculty of Silviculture and Forest Engineering	
1.3 Department	Department of Forest Engineering , Forest Management	
	Planning and Terrestrial Measurements	
1.4 Field of study ¹⁾	Forestry	
1.5 Study level ²⁾	MA	
1.6 Study programme/ Qualification	Forestry for Multiple Purposes / Master in Forest Science	

2. Data about the course

2.1 Name of cour	se		Remote sensing and GIS in natural resource management					
2.2 Course convenor Prof. dr.eng. Mihai Daniel Niță								
2.3 Seminar/ laboratory/ project Prof. dr.eng. Mihai Daniel Niță								
convenor								
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation type	Е	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of which: 3.2	lecture	1	3.3 seminar/ laboratory/ project	2
3.4 Total number of hours in	42	out of which: 3.5	lecture	14	3.6 seminar/ laboratory/ project	28
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes					26	
Additional documentation in libraries, specialized electronic platforms, and field research					26	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					43	
Tutorial					5	
Examinations					8	
Other activities					0	
3.7 Total number of individual stu	udy hou	Jrs 108	;			

5.7 Total number of individual study hours	108
3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	5

4. Prerequisites (if applicable)

4.1 curriculum-related	•
4.2 competences-related	•

5. Conditions (if applicable)

5.1 for course development	Course attendance is facultative.
5.2 for seminar/ laboratory/	Laboratory attendance is compulsory;
project development	• Deadlines for portfolio submission will be commonly established by the teacher and
	students.

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production					
	systems.					
	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and					
	technologies applied and anticipated in forest ecosystem management and forest production systems.					
	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and					
	technologies related to forest ecosystem management and forest production systems.					
	Relevance:					
	This aligns with understanding satellite image interpretation, vegetation indices, and land cover monitoring,					
	which are core tasks in natural resource management using remote sensing and GIS.					
	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and					
	strategic systems.					
s	• LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and					
tenc	technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry					
npe	sector.					
COD	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and					
nal	technologies related to economic, regulatory, political, and strategic systems in the forestry sector.					
issic	Relevance:					
rofe	Students will analyze and make decisions regarding natural resource degradation , land-use changes, and					
ā	sustainable management solutions through GIS and remote sensing.					
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and					
	macro-social and institutional levels in the forestry sector.					
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team					
	and with external partners.					
	Relevance:					
	Critical for teamwork in laboratory exercises, portfolio development, and reporting results from GIS-based					
	analysis or case studies.					
	CI.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and					
	rorestry research projects.					
	• LO 2.5: The graduate can efficiently lead teams and research projects.					
	Applicable when students collaborate on spatial analysis projects or conduct fieldwork using OField and GNSS					
	techniques					
	CT 3: Objective self-evaluation of the need for continuous professional development to adapt competences to					
lces	the dynamics of the field and labor market demands					
eter	• IO 3.1 : The graduate keeps updated with advances in techniques and research in their field of					
du	practice.					
al co	Relevance:					
ersa	Important for integrating the latest remote sensing tools (e.g., Google Farth Engine) and advancing spatial					
NSN.	decision-making methodologies.					
Tra						

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• To familiarize the students with the state-of-art and advanced knowledge		
	approaches used in remote sensing and geographical information systems in		
	natural resource management.		
7.2 Specific objectives	• To develop the personal and interpersonal skills related to satellite images		
	interpretation and using GIS in natural resource management;		
	• To understand, assess and monitoring the effects of land use/land cover		
	changes on the natural resources;		
	• To develop the skills to use remote sensing and GIS in various applications		

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to remote sensing. Spectral		
reflectance curves, Image characteristics, Sensor		
systems (Landsat MSS, TM, ETM, HRV, LISS, IKONOS-		
2, Quickbird-2 and others), Platforms (type and orbital	Lastura	
characteristics), Thermal infrared (characteristics, TIR	Lecture	2 Hours
band proprieties, TIR image interpretation)		
Data sources and procurement, Data formats (BSQ,		
BIL, BIP, etc), Image subletting & enhancement, Image		
cleaning, Atmosphere path correction, Image		
mosaicking and color balancing, Image rectification,	Lecture	2 hours
Registration and re-sampling, Band rations		
Vegetation indices, Image filtering, Difference images,		
Principal component analysis, Classification schemes,		
Types, algorithms, Field data collection, Qualitative		
and guantitative techniques, Sampling techniques,	Lecture	2 hours
Error matrices, Ground-verification (Field verification).		
Microwave and hyperspectral remote		
sensing:		
Sensor and platforms types (RADAR, SAR, AIRSAR,		
SLAR etc.). Working mechanism. Spectral		
characteristics of microwave images, RADAR Image		
geometry and interferometry. Data compression and		
reconstruction. RADAR image pre-processing and		
classification Field verification Data fusion		
techniques Microwave applications Hyperspectral	Lecture	2 hours
remote sensing channels and spectral libraries		
sensors (AIS AIVIS etc.) Application of hyperspectral		
data		
Introduction to GIS Introduction Definition		
Key components. Functional subsystem. Baster data		
model Vector data model Attribute data model Data		
acquisition techniques. Data sources. Data canturing		
technique and procedures. Data transformation		
Visualization of spatial data Man design Data	Lecture	2 hours
classification Spatial analysis Spatial data quality		
Spatial decision support systems Decision		
making processes: Introduction Major decision-		
making Paradigms Models of decision-making		
Different Hierarchy of decisions types of problem		
Hierarchy of decisions		
Snatial decision-making Introduction A		
systematic approach for colving costial problems		
Mothods and tochniques to support coatial decisions		
Derformance modeling and types of stitution		
Uncertainty in decision making process	Lecture	2 hours
סווכבו נמווונץ ווו מכנוסוטון וומתוודב פו טנכסס.		

Decision Support Systems: Introduction,		
Definition and components, Fundamental phases,		
Characteristics and capabilities of DSS, GIS and DSS,		
Spatial decision support systems, Integration of GIS		
and DSS.		
Methods and tools for collaborative decision-		
making: Introduction, Task analysis as a need		
assessment, Conflict analysis		
Using GIS in the field: Android GPS Receivers		
– functioning and solutions in forestry. Using Ofield		
for updating GIS database in the field, Personalizing	Lecture	2 hours
forms		
Bibliography		
1. Aiello A., Adamo M., Canora F., (2015), Remote sensi	ng ang GIS to assess soil erosi	on with RUSLE3D and USPED at
river basin scale in southern Italy. <i>Catena</i> 131 174-1	185	
2. Butler R., Schlaenfer R., (2004). Spruce spag quant	tification by coupling colour ir	frared aerial photos and a GIS.
Forest Ecology and management 195 325-339		
3 Canada Centre for Remote Sensing	Tutorial <i>Fundamental</i>	s of Remote Sensing
http://www.ldeo.columbia.edu/res/fac/rsvlab/funda	imentals endf	
4 Congalton R.G. Green K (2009) Assessing the accu	iracy of remotely sensed data	Principles and practices Second
Edition Taylor and Francis Group Boca Raton Londo	n New York	
5 Dermanis Δ Biagi I (2008)	Satellites sensors	and data formats
http://geomatica.como.nolimi.it/corsi/remote_sensi	ng/C03Satellites ndf	and data formats.
6 Flachi ((1987) Introduction to the physics and te	provide sensing	Chichester New York Brisbane
Toronto Singanore: John Wiley		
7 FRDAS Field Guide Fifth	Edition Revised	and Expanded
http://www.gis.usu.edu/manuals/labbook/erdas/ma	anuals/FieldGuide.ndf	
8 Hegazy I.R. Kaloon M.R. (2015) Monitoring urban	growth and land use change	detection with GIS and remote
sensing techniques in Dagablia governorate Egynt	International Journal of Sustai	nable Ruilt Environment & 117-
124.		
9 Landsat Project Science Office (2002)	Landsat 7 Science	Data User's Handbook
http://ltp.www.gsfc.pasa.gov/IAS/handbook/handbo	ok tochtml	
10 Leica Geosystems (2005) FRDAS Imagine Version S	an Leica Geosystems Geospat	ial Imaging LLC Norcross GA
11 Levin N (1999) Fundamentals of Remote Sensi	<i>ng</i> http://geography.huii.ac.il/	/nersonal/Noam%201 evin/1999-
fundamentals-of-remote-sensing pdf		
12 Lillesand T.M. Kiefer R.W. Chinman J.W. (2008)	Remote Sensing and Image Ir	nterpretation Sixth Edition John
Wiley & Sons Inc United States of America		
13 Petropoulos G Kallivas D Griffiths H Dimou P (2015) Remote sensing and G	IS analysis for manning spatio-
temporal changes of erosion and deposition of t	wo Mediterranean river delt	as The case of the Axios and
Aliakmonas rivers Greece International Journal of A	nnlied Farth Observation and (Seconformation 5B 217-228
14 Raney R.K. (1998) Radar fundamentals: technica	l nerspective Principles and	Applications of Imaging Radar
Manual of Remote Sensing 3rd ed. vol. 2. Wiley, Nev	w York 9–130	
15 Richards LA (2013) Remote sensing digital image a	nalysis An introduction Spring	Jer .
16 Vopenka P. Kaspar I. Marusak R. (2015) GIS tor	ol optimization of forest herv	est-scheduling Computers and
Flectronics in Agriculture 113, 254-259		
17 Wang X Yu S Huang G H (2004) Land allocation h	ased on integrated GIS-ontim	ization modeling at a watershed
evel Landscape and Lirban Planning 66, 61-74		at a water shed
18 Welch R. Madden M. Jordan T. (2002) Dhotogram	metric and GIS techniques for	the development of vegetation
databases of montainous areas: Great Smoky Mou	Intains National Dark Journa	I of Photogrammetry & Remote
acabases of montainous areas, arear smoky mot		s. , notogrannineny a nemble

Sensing, 57, 53-68.

19. Wikstrom P., Edenius L., Elving B., Eriksson L.O., Lamas T., et al., (2011), The heureka forestry decision support system: An overview, *Mathematical and Computational Forestry and Natural-Resource Sciences*, 3, 87-95.

20.Zambelli P., Lora C., Spinelli R., Tattoni C., Vitti A., Zatelli P., Ciolli M., (2012), A GIS decision support system for regional forest management to assess biomass availability for renewable energy production, *Environmental Modelling & Software*, 38, 203-213.

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Remarks
Digital Image Processing – optical images.		
Introduction in laboratory and software, Single band		
image interpretation, False color predictions, False		
color composite images interpretation. Various		
sensors data comparison. Thermal infrared image		
interpretation Introduction to ENVI display Geo-		
linking Zooming Identification of targets field trin		
Image management (import/ovport and		
display Ephancoment techingues Spectral and	Casa study	8 hours
costial digitising Massising and solar balansing	Case study	8 10015
Spatial digitishing, Mosaiching and color balancing,		
Recunction and registration and re-sampling, Band		
rations, Vegetation indices, Difference images, image		
filters, Signature selection, Supervised, unsupervised		
and hybrid classification, ISODATA, MDM, MLC and		
Baysian classification, Error matrix generation,		
Classification validation, Field work (data aquisition		
with GNSS technique). Application: vegetation		
changes, LULC changes, Forest disturbances, Cropping		
pattern, Environmental monitoring, Surface mining		
etc.		
Microwave and hyperspectral remote		
sensing.		
Introduction to microwave image processing module,		
Microwave image comparison, Visual interpretation of		
radar images, Radar image pre-processing (Total	Case study	6 hours
power image, Like an unlike polarization, Ground		
resolution, Rectification and registration, Optical and		
RADAR data fusion case studies). Application:		
vegetation changes, LULC changes, Forest		
disturbances, Cropping pattern, Environmental		
monitoring, Surface mining etc.		
Using Google Earth Engine to for digital image		
processing: Getting used with GEE coding, building		
your own code, codding for cloud masking, building	Lase study	4 hours
vegetation indices mosaics		
Introduction to GIS: Introduction to GIS Lab		
(hardware/software), Raster/Vector/Attribute data		
display, Scanning, Digitization, Coordinate based point		
mapping, Raster/Vector conversion, Data layer		
integration and display of different projection, Map		
layout, Data classification and thematic mapping,	Case study	4hours
Handling with topological errors, Overlay ant network	,	
analysis.		
Spatial data analysis. Assignment on spatial		
	l	

analysis for various applications, Geo-coding and point analysis exercise, Network analysis exercise, Areal analysis exercise, Buffer analysis exercise, Multivariate analysis, Assignment on advanced spatial analysis, Interpolation of elevation data and surface modelling, Suitability analysis, Risk modeling, Assignment on uncertainties in spatial modeling	Case study	2 hours		
Using Qfield: Creating a personalized project and form, collecting data directly in the field, integrating Qfield measurements in GIS and Remote Sensing applications	Case study	4 hours		
 Bibliography 1. Aiello A., Adamo M., Canora F., (2015), Remote sensi river basin scale in southern Italy, <i>Catena</i>, 131, 174 2. Butler R., Schlaepfer R., (2004), Spruce snag quan <i>Forest Ecology and management</i>, 195, 325-339. 3. Canada Centre for Remote Sensing 	ing ang GIS to assess soil erosi -185. tification by coupling colour ir Tutorial. <i>Fundamental</i> s	on with RUSLE3D and USPED at Infrared aerial photos and a GIS, <i>s of Remote Sensing.</i>		
http://www.ldeo.columbia.edu/res/fac/rsvlab/funda 4. Congalton, R.G., Green, K. (2009). <i>Assessing the accu</i> Edition. Taylor and Francis Group, Boca Raton, Londo	amentals_e.pdf. <i>uracy of remotely sensed data.</i> on, New York.	<i>Principles and practices</i> . Second		
 Dermanis, A., Biagi, L. (2008). http://geomatica.como.polimi.it/corsi/remote_sensities Elachi, C. (1987). <i>Introduction to the physics and te</i> Toropto Singapore: John Wiley. 	Satellites, sensors ing/C03Satellites.pdf. echniques of remote sensing.	and data formats. Chichester, New York, Brisbane,		
 7. ERDAS Field Guide. Fifth http://www.gis.usu.edu/manuals/labbook/erdas/ma 8. Hegazy I.R., Kaloop M.R., (2015), Monitoring urban sensing techniques in Dagahlia governorate Egypt. 	Edition, Revised anuals/FieldGuide.pdf growth and land use change International Journal of Sustai	d and Expanded. detection with GIS and remote inable Built Environment, 4, 117-		
124. 9. Landsat Project Science Office (2002). http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbo	Landsat 7 Science pok_toc.html.	Data User's Handbook.		
 Leica Geosystems (2005). ERDAS Imagine, Version Levin, N. (1999). <i>Fundamentals of Remote Sensi</i> fundamentals-of-remote-sensing.pdf. 	9.0. Leica Geosystems Geospa <i>ing</i> . http://geography.huji.ac.il/	tial Imaging LLC, Norcross, GA. 'personal/Noam%20Levin/1999-		
 Lillesand, T.M., Kiefer, R.W., Chipman, J.W. (2008). <i>Remote Sensing and Image Interpretation</i>. Sixth Edition. John Wiley & Sons, Inc. United States of America. Petropoulos G., Kallivas D., Griffiths H., Dimou P., (2015), Remote sensing and GIS analysis for mapping spatio-temporal changes of erosion and deposition of two Mediterranean river deltas: The case of the Axios and Aliakmonas rivers. Greece. <i>International Journal of Applied Earth Observation and Geoinformation</i>, 5B, 217-228. 				
 14. Raney, R.K. (1998). Radar fundamentals: technical perspective. Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3rd ed., vol. 2, Wiley, New York, 9–130. 15. Richards, J.A. (2013). Remote sensing digital image analysis. An introduction. Springer. 				
 16. Vopenka P., Kaspar J., Marusak R., (2015), GIS to <i>Electronics in Agriculture</i>, 113, 254-259. 17. Wang X., Yu S., Huang G.H., (2004), Land allocation to lovel. <i>Landecane</i> and Urban Planning Sc. 51, 74. 	ol optimization of forest herv based on integrated GIS-optim	est-scheduling, <i>Computers and</i> ization modeling at a watershed		
 18. Welch R., Madden M., Jordan T., (2002), Photogram databases of montainous areas: Great Smoky Mon Sensing, 57, 53-68. 	metric and GIS techniques for untains National Park, <i>Journal</i>	^r the development of vegetation I of Photogrammetry & Remote		

19. Wikstrom P., Edenius L., Elving B., Eriksson L.O., Lamas T., et al., (2011), The heureka forestry decision support

system: An overview, *Mathematical and Computational Forestry and Natural-Resource Sciences*, 3, 87-95.
20.Zambelli P., Lora C., Spinelli R., Tattoni C., Vitti A., Zatelli P., Ciolli M., (2012), A GIS decision support system for regional forest management to assess biomass availability for renewable energy production, *Environmental Modelling & Software*, 38, 203-213.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The course content is in accordance with the other courses developed in other universities from the country and abroad. Also, the course content is aligned with the strategy and vision of Faculty of Silviculture and Forest Engineering, with the qualification system and the European qualification framework.

10. Evaluation

10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage				
		of the final grade				
 Knowledge correctness and complexity 						
 Capability to properly use the concepts and terminology in remote sensing and GIS 	Exam	50%				
 Capability to analyze and interpret relevant case studies and contexts in remote sensing and GIS 						
Capability to correctly use the						
software and methods to						
interpret satellite images used like						
support for analysis in natural						
resource management						
Capability to use GIS software in						
analysis the different cases and						
making decisions in natural	Portfolio	50%				
resource management						
 Capability to join the remote 						
sensing and GIS methods for						
analysis and making decisions in						
natural resource management						
10.6 Minimal performance standard						
• Students will be able to interpret and analyse the satellite images and using GIS in natural resource management;						
	 Knowledge correctness and complexity Capability to properly use the concepts and terminology in remote sensing and GIS Capability to analyze and interpret relevant case studies and contexts in remote sensing and GIS Capability to correctly use the software and methods to interpret satellite images used like support for analysis in natural resource management Capability to use GIS software in analysis the different cases and making decisions in natural resource management Capability to join the remote sensing and GIS methods for analysis and making decisions in natural resource management Sapability to join the remote sensing and GIS methods for analysis and making decisions in natural resource management 	 Knowledge correctness and complexity Capability to properly use the concepts and terminology in remote sensing and GIS Capability to analyze and interpret relevant case studies and contexts in remote sensing and GIS Capability to correctly use the software and methods to interpret satellite images used like support for analysis in natural resource management Capability to use GIS software in analysis the different cases and making decisions in natural resource management Capability to join the remote sensing and GIS matural resource management Capability to join the remote sensing and GIS matural resource management 				

 Students will be able to analyse different situations occurred in environment and solve them using remote sensing techniques and GIS;

• Students will be able to use remote sensing techniques and GIS in decision making in natural resource management.

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Dean:	Head of Department:		
Prof. Dr. Ing. Alexandru Lucian CURTU	Prof. Dr. Ing. Stelian Alexandru BORZ		
Course holder:	Holder of laboratory:		
Prof. dr.eng. Mihai Daniel Niță	Prof. dr.eng. Mihai Daniel Niță		

Note:

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	<i>Transilvania</i> University of Braşov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Silviculture
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Forestry for Multiple Purposes / Master in Forest Science

2. Data about the course

2.1 Name of course		FORESTS AND WATER						
2.2 Course convenor		Assoc.Prof. Victor Dan Pacurar -Part I/ Prof. Mihai Daniel NIȚĂ-Part II						
2.3 Seminar/ la	3 Seminar/ laboratory/ project Assoc.Prof. Victor Dan Pacurar -Part I/ Prof. Mihai Daniel NIȚĂ-Part II			ai Daniel NIȚĂ-Part II				
convenor								
2.4 Study	1	2.5	1	2.6 Evaluation	Е	2.7 Course	Content ³⁾	SC
year Semester				type		status	Attendance	CPC
							type ⁴⁾	

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of which: 3.2	1	3.3 seminar/ laboratory/	2
		lecture		project	
3.4 Total number of hours in	42	out of which: 3.5 lectu	re 14	3.6 seminar/ laboratory/ project	28
the curriculum					
Time allocation					hours
Study of textbooks, course support, bibliography and notes					42
Additional documentation in libraries, specialized electronic platforms, and field research					28
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					38
Tutorial					24
Examinations					6
Other activities					-
3.7 Total number of individual study hours 138					
3.8 Total number per semester 180					

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	
4.2 competences-related	

6

5. Conditions (if applicable)

5.1 for course	Course attendance is facultative.
development	
5.2 for seminar/	Laboratory attendance is compulsory;
laboratory/ project	• Deadlines for portfolio submission will be commonly established by the
development	teacher and students.

6. Specific competences

-	-				
	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest				
	production systems.				
	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques,				
	and technologies applied and anticipated in forest ecosystem management and forest				
	production systems.				
	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and				
	technologies related to forest ecosystem management and forest production systems.				
	Relevance:				
es	The course focuses on the impact of forests on local, regional, and global water resources , modeling				
tenc	hydrological processes, and evaluating erosion risks, directly aligning with these competences.				
ıl compet	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory,				
	political, and strategic systems.				
siona	• LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques,				
ofess	and technologies applied and anticipated in economic, regulatory, political, and strategic				
Pro	systems in the forestry sector.				
	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and				
	technologies related to economic, regulatory, political, and strategic systems in the forestry				
	sector.				
	Relevance:				
	The course emphasizes digital watershed models, InVEST tools, and GIS-based approaches for flood,				
	erosion, and water yield simulation, supporting practical problem-solving in forest-water				
	interactions.				

	CT.1: N	Aastery of techniques and procedures for interaction, networking, and communication at the		
	micro-	- and macro-social and institutional levels in the forestry sector.		
	•	LO 1.1: The graduate objectively evaluates the responsibilities and capacities of team		
		members or collaborators.		
	•	LO 1.2: The graduate organizes activities based on employee qualifications, task complexity,		
S		and agreed time and performance norms.		
ence	•	LO 1.3: The graduate employs effective communication strategies and techniques within the		
npet		team and with external partners.		
соп	Relevance:			
ersal	Stude	nts develop autonomy in problem-solving through fieldwork, case studies, and hands-on use of		
nsve	digital tools, enhancing critical thinking and independent decision-making.			
Tra				

7.1 General course objective	• To provide structured knowledge regarding the forest water	
	relationships in the context of sustainable multiple purpose forest	
	management	
7.2 Specific objectives	• To analyse the forest ecosystems impact on local, regional and	
	global water resources	
	• To learn modelling methods of water flux in the soil-tree-	
	atmosphere system.	
	To study modelling and simulation of hydrological and erosion	
	processes	
	• To learn to use complex digital watershed models (GIS	
	databases) in flood and erosion risk analysis and flow	
	hydrograph simulation	

7. Course objectives (resulting from the specific competences to be acquired)

8. Content

8.1	Course	Teaching methods	Remarks
1.	Part I Modelling and simulation of hydrological and	Lastura	2 hours
	erosion processes. Models' classification. Expert systems.	Lecture	2 110015
2.	Soil erosion risk assessment in forest areas by using an adapted version of RUSLE (Revised Universal Soil Loss Equation).	Lecture	2 hours
3.	Distributed Models: Basic elements and applications in Romanian watersheds		

	(ANSWERS, TOPMODEL, and WEPP).		
4.	Flood and erosion risk analysis by using complex	lecture	2 hours
	digital watershed models.		
	Part II		
5.	Forest and water interactions: forest and water	Lecture	1 hour
	ecosystem services. Forest management		
	impacts on water ecosystem services		
6.	The enabling environment for forests and water:		
	risk management, regional context, future		
	developments		
7.	Past and current research and management		
	activities in quantifying this relation in Romania.	Locturo	2 bours
	Hydrological risk assessment and hydrological		2 110015
	classification of land use in forested watersheds		
8.	Economic valuation of water-related forest		
	ecosystem services	Lecture	2 hours
		Lecture	2 hours
		Lecture	1 hour

Bibliography

Beasley, D.B., Huggins, L.F. -ANSWERS. User's Manual. Agricultural Engineering Department, Purdue University, 1991.

Beven, K. ş.a -Topmodel and Gridtab. A users guide to the distribution versions (95.02). Centre for Research on Environmental Systems and Statistics, Lancaster University, 1997

Ciortuz, I., Păcurar, V.D. – Amelioratii silvice. Ed.LuxLibris, Braşov, 2004.

Foster, G.R ş.a. - USDA-Water Erosion Prediction Project (WEPP)., USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, 1995.

Gray, D.H., Sotir, R.B. - Biotechnical and soil bioengineering slope stabilization. A practical guide for erosion control. John Wiley & Sons, New York, 1996.

Păcurar, V.D.- Utilizarea sistemelor de informatii geografice în modelarea și simularea proceselor

hidrologice. Ed.Lux Libris, Braşov, 2006.

Păcurar, V.D.-Modelarea și simularea proceselor hidrologice și erozionale în bazine hidrografice împădurite la începutul secolului XXI, in Silvologie vol.VI. Amenajarea bazinelor hidrografice torentiale. Noi conceptii și fundamente știintifice. Editura Academiei Romane, 2008.

Singh, V.P. -Editor -Computer Models of Watershed Hydrology, Water Resouces Publications, Colorado, U.S., 1995.

Woolhiser, D.A., Smith,R.E., Goodrich, D.C. KINEROS, A Kinematic Runoff and Erosion Model, Documentation and User Manual, Agricultural Research Service, United States Department of Agriculture, 1990.

EEA, European Environment Agency 2015. Water-retention potential of Europe's forests, EEA Technical report 13/2015, European Environment Agency, Copenhagen, Denmark.

FAO. 2008. Forests and water. A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. FAO Forestry Paper 155. FAO. Rome

Fiquepron, J, Garcia, S, Stenger, A 2013. Land use impact on water quality: valuing forest services in terms of the water supply sector. Journal of environmental management, 126, 113-121.

Forestry Commission. 2011. Forests and Water. UK Forestry Standard Guidelines. Forestry Commission, Edinburgh.

Gatto, P, Pettenella, D, Secco, L. 2009. Payments for forest environmental services: organisational models and related experiences in Italy. iForest, 2: 133-139.

Niță MD., Clinciu I (2017) Forest Management and Water in Romania. Capitol In: Pablo A. Garcia-Chevesich,

Daniel G. Neary, David F. Scott, Richard G. Benyon, Teresa Reyna. (eds) Forest management and the impact on water resources: a review of 13 countries. United Nations Educational, Scientific and Cultural

Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France and UNESCO Regional Office for Sciences for Latin America and the Caribbean – UNESCO Montevideo. p. 9. ISBN 978-92-3-100216-8

UNECE. 2016. Water Policy Reforms in Eastern Europe, the Caucasus and Central Asia Achievements of the European Union Water Initiative, 2006-16

UNECE (2018): Forests and Water. Valuation and payments for forest ecosystem services. Geneva. ISBN 978-92-1-117175-4

8.2 Seminar/ laboratory/ project	Teaching-learning	Remarks
	methods	
	Part I	
1. The water cycle. Water role in trees`life. Forest	Problem based learning	2 hours
cover impact on local, regional and global water		
resources.		
2. Water flux modelling in the soil-tree-	Problem based learning	2 hours
atmosphere system. Evapotranspiration		
evaluation (Penmann-Monteith Equation). Water		

balance analysis in forest stands (Rainfall		
interception, throughfall, stemflow, infiltration		
and runoff estimation)		
3 An overview of water related bazards (land	Droblom based learning	2 hours
dogradation processes) and control measures in	Problem based learning	2 110015
Domania		
4. Field analysis of an area affected by complex	Droblom based learning -	6 bours
degradation	fieldwork	0 Hours
5 Flow bydrograph simulation and poak		2 hours
discharge evaluation in forested watershed by	Froblem based learning	2 110013
using the digital isochrones method		
	Part II	
	i artii	I
6. Demonstration of forest influence for water	Problem based learning	2 hours
supply service using InVEST model. General		
description and usage of InVEST model		
7. Identify the forest influence using Sediment	Problem based learning	2 hours
Retention model to estimate the capacity of a		
land parcel to retain sediment by using		
information on geomorphology, climate,		
vegetative coverage and management practices.		
8. Quantify the influence of forest in Water	Problem based learning	2 hours
Purification.		
Nutrient Delivery Ratio model maps nutrient		
sources from watersheds and their transport to		
the stream. This spatial information can be used		
to assess the service of nutrient retention by		
natural vegetation		
9. Using InVEST "Water Yield model" to estimate	Problem based learning	2 hours
the annual average quantity of water produced		
by a watershed.		
10. Mapping the ecosystem services of forest in	Problem based learning	2 hours
respect to sediment retention, water purification		
and water yield in different scenarios.		
11. Applied examples on evaluating the	Problem based learning	2 hours
characteristics of forest in regulating the runoff		
using GIS and remote sensing products		
12. Applied examples on evaluating the	Problem based learning	2 hours
characteristics of forest in regulating the runoff		
using GIS and remote sensing products		
Bibliography		
Ciortuz I. Păcurar V.D. – Amelioratii silvice Ed Lux	libris Brasov 2004	

Gray, D.H., Sotir, R.B. - Biotechnical and soil bioengineering slope stabilization. A practical guide for erosion

control. John Wiley & Sons, New York, 1996.

Păcurar, V.D.- Utilizarea sistemelor de informatii geografice în modelarea și simularea proceselor hidrologice. Ed.Lux Libris, Brașov, 2006.

Păcurar, V.D.-Modelarea și simularea proceselor hidrologice și erozionale în bazine hidrografice împădurite la începutul secolului XXI, in Silvologie vol.VI. Amenajarea bazinelor hidrografice torentiale. Noi conceptii și fundamente știintifice. Editura Academiei Romane, 2008.

Singh, V.P. -Editor -Computer Models of Watershed Hydrology, Water Resources Publications, Colorado, U.S., 1995.

I Clinciu, MD Niță, Ș Davidescu, NC Tudose, CC Tereșneu (2018): A simplified methodology for estimating the torrential risk in small, predominantly forested, mountainous watersheds. Revista Pădurilor 133 (4), 3-20 Hamel and Guswa 2014 (Hydrological Earth Systems Science Uncertainty analysis of a spatially-explicit annual water-balance model: case study of the Cape Fear Catchment, NC

Hamel et al. 2015 (Science of the Total Environment) A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA

MD Niță, BȘ Candrea-Bozga, I Clinciu (2015) Monitoring status of forest hydrological and erosional protection service using geospatial analysis. Revista Pădurilor 130 (5/6), 66-73

Popa B., Coman C., Borz A.A., Nita D M., Codreanu C., Ignea Gh., Marinescu V., Ioras F., Ionescu O. (2013)

Total economic value of natural capital – a case study of Piatra Craiului National Park. Notulae Botanicae Horti Agrobotanici 41(2):608-612.

Terrado et al. 2014 (Ecological Indicators) Impact of climate extremes on hydrological ecosystem services in heavily humanized Mediterranean basin

Toft et al. 2013 (ICES Journal of Marine Sciences) From mountains to sound: modelling the sensitivity of Dungeness crab and Pacific oyster to land–sea interactions in Hood Canal, WA

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The sustainable management of forest and water resources are intricately linked and the specific knowledge and skills will be extremely beneficial for the future managers of natural resources, especially in the context of the possible climate changes.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3
			Percentage of
			the final grade

10.4 Course	Ability to use modelling	Written examination	60
	and simulation in		
	analysing hydrological		
	and erosion processes		
10.5 Seminar/ laboratory/	Capability to analyse and	Portofolio/ Written	40
project	interpret relevant case	examination	
	studies and to design		
	technical solutions		
10.6 Minimal performance star	ndard		
Basic knowledge regarding	the forest water relationships	in the context of sustainable n	nultiple purpose
forest management			

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.ing. Lucian Alexandru CURTU	Prof.dr.ing. Stelian Alexandru Borz
Dean	Head of Department
Conf.dr.ing.Victor Dan PACURAR	Conf.dr.ing.Victor Dan PACURAR
Prof.dr.ing. Mihai Daniel NIȚĂ	Prof.dr.ing. Mihai Daniel NIȚĂ
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;

- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1Higher education	Transilvania University of Brasov
institution	
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial Measureme
1.4 Field of study	Forestry
1.5 Study level	Master
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master in Forest Science

2. Data about the course

2.1 Name of cour	of course Applied statistics in forest research							
2.2 Course convenor		Prof. dr.ing. Ion Catalin Petritan and Prof. dr.ing. Ioan Dutca						
2.3 Seminar/ lab	2.3 Seminar/ laboratory/ project Prof. dr.ing. Ion Catalin Petritan and Prof. dr.ing. Ioan Dutca							
convenor								
2.4 Study year	1	2.5 Semester	1	2.6 Evaluation type	EI	2.7 Course	Content ³⁾	PC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2	lecture	2	3.3 seminar/ laboratory/ project	2
3.4 Total number of hours in	56	out of which: 3.5	lecture	28	3.6 seminar/ laboratory/ project	28
the curriculum						
Time allocation						hours
Study of textbooks, course supp	ort, bib	liography and note	s			80
Additional documentation in libraries, specialized electronic platforms, and field research			4			
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays		60				
Tutorial						2
Examinations						8
Other activities						
3.7 Total number of bours of stu	idont a	ctivity 15/				

3.7 Total number of hours of student activity	154
3.8 Total number per semester	210
3.9 Number of credits ⁵⁾	7

4. Prerequisites (if applicable)

4.1 curriculum-related	•
4.2 competences-related	•

5. Conditions (if applicable)

5.1 for course development	•
5.2 for seminar/ laboratory/	Compulsory attendance
project development	

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems.
	• LO 1.1: The graduate understands statistical concepts, methods, and tools necessary for evaluating and modeling forest ecosystems.
	• LO 1.2: The graduate applies statistical methods to analyze data from observational and experimental forest studies and interprets the results within an ecological context.
	Relevance:
	This course emphasizes statistical data analysis, hypothesis testing, regression, and multivariate methods
	directly applicable to forest ecosystem research and management.
	CP.4: New and emerging technologies applications in analyzing, developing, evaluating, and modeling forest ecosystems and forest technical systems.
ences	• LO 4.1: The graduate integrates modern statistical tools such as R language and Bayesian models into forestry research workflows.
ompet	LO 4.2: The graduate designs and conducts statistically robust experiments to evaluate forest ecosystem functions and processes.
alco	Relevance
ion	This course trains students to use R programming for advanced data analysis including spatial statistics
fess	multivariate analysis, and Bavesian models, ensuring they are equipped for contemporary research demands.
Pro	
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and
	macro-social and institutional levels in the forestry sector.
	• LO 1.3: The graduate communicates statistical results effectively to diverse stakeholders, including
	scientists, policymakers, and practitioners.
	Relevance:
	Students enhance their ability to visualize and interpret statistical results and present their findings through
	graphs and reports, meeting the needs of interdisciplinary teams.
	CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and
	forestry research projects.
	• LO 2.1: The graduate collaborates in research projects, sharing knowledge of statistical approaches
	and ensuring rigorous analysis.
	I brough group-based seminars and project work, students learn to collaborate, interpret statistical findings,
	and support research decision-making.
ces	the dynamics of the field and labor market demands
eten	I CORT The graduate stays undated on emerging statistical methods and tools, adapting to
⊎dш	• LOS. I: The graduate stays updated on energing statistical methods and tools, adapting to
al co	Relevance:
ersa	The course encourages lifelong learning through hands-on exposure to statistical tools such as R and IAGS.
INSU	fostering adaptability to changing research methodologies.
Tra	

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• Exploring the advantages offered by modern statistical analysis in order to
	evaluate and infer the structure and functioning of forest ecosystem.
7.2 Specific objectives	To provide an understanding for forestry students on statistical concepts
	and methods

8. Content

8.1 Cou	Irse	Teaching methods	Number of hours	Remarks
1.	Brief introduction to R language (Basics,	Lecturing	8	
	Computation using R, Vectors-Matrices			
	and arrays, Data frames, Input and Output,			
	Data visualization-Graphs. Types of data.			
	Central limit theorem			
2.	Data exploration (Descriptive statistics,	Lecturing	2	
	Exploring relationship between variables-			
	correlation)			
3.	Hypothesis testing (one and two sample	Lecturing	2	
	tests): one and two-sample t test,			
	Wilcoxon signed-rank test, Mann-Whitney			
	U test, Fisher test, paired T and Wilcoxon			
	test			
4.	One and two-way Analysis of Variance	Lecturing	2	
	(the variance assumption, pairwise			
	comparisons and multiple testing, Kruskal-			
	Wallis test, Friedman test), Analysis of			
	Covariance			
5.	Regression analysis (Simple, multiple and	Lecturing	4	
	factorial linear regression, Goodness of fit,			
	Model assumptions and diagnostic			
	(Linearity, independence, variance			
	homogeneity and normality). Interactions.			
	Mixed effect models (varying intercept and			
	slope models; exploring the random and			
	fixed effect). Logistic regression			
6.	Multivariate analysis (principal component	Lecturing	2	
	analysis, cluster analysis, factor analysis)			
7.	Spatial statistics (univariate and bivariate	Lecturing	6	
	point pattern analysis-pair-correlation			
	function, Ripley function, marked-			
	correlation function, various indices based			
	on distance between nearest neighbour)			
8.	Sampling	Lecturing	2	
Bibliog	raphy			
Wiegar	nd, T., Moloney, K.A. 2014: Handbook of Spatia	l Point-Pattern Analysis in Eo	cology. Chapman and	Hall/CRC
Daalga	rd, P. 2008. Introductory statistics with R. Sec	cond edition. Springer		
Shahba	aba, B. 2012. Biostatistics with R. An introduct	ion to statistics through biolo	ogical data. Springer	
MacFa	rland TW, 2014. Introduction to data analysis a	and graphical presentation in	biostatistics with R. S	pringer
8.2 Ser	ninar/ laboratory/ project	Teaching-learning	Number of hours	Remarks

		methods		
1.	Brief introduction to R language (Basics, Computation using R, Vectors-Matrices and arrays, Data frames, Input and Output, Data visualization-Graphs	Computer applications	6	
2.	Data exploration (Descriptive statistics, Exploring relationship between variables- correlation)	Computer applications	2	
3.	Hypothesis testing (one and two sample tests): one and two-sample t test, Wilcoxon signed-rank test, Mann-Whitney U test, Fisher test, paired T and Wilcoxon test	Computer applications	4	
4.	One and two-way Analysis of Variance (the variance assumption, pairwise comparisons and multiple testing, Kruskal- Wallis test, Friedman test), Analysis of Covariance			
5.	Regression analysis (Simple, multiple and factorial linear regression, Goodness of fit, Model assumptions and diagnostic (Linearity, independence, variance homogeneity and normality). Interactions. Mixed effect models (fitting a random intercept model; a random slope model and a random intercept and slope model; interpretation of random and fixed effects)	Computer applications	4	
6.	Multivariate analysis (principal component analysis, cluster analysis, factor analysis)	Computer applications	2	
7.	Spatial statistics (univariate and bivariate point pattern analysis-pair-correlation function, Ripley function, marked- correlation function, various indices based on distance between nearest neighbour)	Computer applications	6	
8. Bibliogr	Introduction to JAGS (Just Another Gibbs Sampler) called from R. Developing a simple linear Bayesian regression model and a Bayesian mixed effect model in JAGS using informative and non-informative priors raphy	Computer applications	4	

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included curricula discussions with Romanian and European experts in the field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Knowledge of statistical concepts and methods	Written examination	40%
	Ability to use statistical terminology and concepts		
	Ability to analyze and interpret results in context		
	Demonstration of logical consistency and clarity		
10.5 Seminar/ laboratory/ project	Ability to apply statistical methods to real datasets	Practical computer applications	50%
	Critical thinking and ability to evaluate results		
	Participation and active engagement in class activities	Active participation in class	10%
	Attendance and timely		
	submission of assignments		
10.6 Minimal performance standa	rd		

- Demonstrate basic knowledge of statistical concepts and their applications in forestry research.
- Perform basic statistical analyses (e.g., t-tests, ANOVA, regression) using R language and interpret the results appropriately.
- Create basic data visualizations in R to effectively communicate results.
- Apply suitable statistical methods to analyze forestry datasets and explain the ecological implications.

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.Dr. Alexandru Lucian Curtu	Prof.Dr. Eng. Stelian Alexandru Borz
Dean	Head of Department
dr.ing. Ion Catalin Petritan & dr.ing. Ioan Dutca	dr.ing. Ion Catalin Petritan & dr.ing. Ioan Dutca
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Braşov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial
	Measurement
1.4 Field of study	Forestry
1.5 Study level	Master
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master in Forest Science

2. Data about the course

2.1 Name of course			Biodiversity conservation					
2.2 Course convenor			Prof. Alexandru Lucian Curtu /Prof. Victor Adrian Indreica					
2.3 Laboratory			Prof. Alexandru Lucian Curtu / Prof. Victor Adrian Indreica					
2 / Study year	4	2 E Comostor	4	2.6 Evaluation type	E	2.7 Course	Content ³⁾	PC
2.4 Study year	'	2.5 Semester	1	2.0 Evaluation type		status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

		-			
3.1 Number of hours per week	2	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	1
3.4 Total number of hours in	20	out of which. 2 E locture	1/	2.6 cominar (Jaboratory (Invoinct	11
the curriculum	20		14	3.8 seminar laboratory project	14
Time allocation	Time allocation			hours	
Study of textbooks, course supp	ort, bib	liography and notes			38
Additional documentation in libra	aries, s	pecialized electronic platfor	ms, and	field research	19
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays			28		
Tutorial					3
Examinations					4
Other activities -					
3.7 Total number of individual stu	udy hou	urs 92			
3.8 Total number per semester		120			

4. Prerequisites (if applicable)

3.9 Number of credits⁵⁾

4.1 curriculum-related	Botany, Dendrology, Genetics
4.2 competences-related	-

4

5. Conditions (if applicable)

5.1 for course development	Course attendance is facultative.
5.2 for seminar/ laboratory/	Laboratory attendance is compulsory;
project development	• Deadlines for portfolio submission will be commonly established by the teacher and
	students.

6. Specific competences

S	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest
DC 6	production systems.
etei	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and
duc	technologies applied and anticipated in the management of forest ecosystems and technical forest
alco	production systems.
sion	• LO 1.2: The graduate applies/uses the concepts, theories, principles, methods, techniques, and
fess	technologies related to the management of forest ecosystems and technical forest production
Pro	systems.
	CT.2: Managing personal and interpersonal relationships specific to teamwork in forest management and
	forestry research and application projects.
	• LO 2.1: The graduate applies ethical principles in their professional activity.
es	• LO 2.2: The graduate promotes high standards of quality and professional integrity within the
enc	team/program they manage.
ıpet	• LO 2.3: The graduate is capable of efficiently coordinating teams and research projects.
соп	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences
sal	to the dynamics of the field and labor market demands.
sver	• LO 3.1: The graduate keeps themselves updated with advances in techniques and research in their
ran	field of practice.
-	• LO 3.2: The graduate identifies opportunities for continuous professional development.
	LO 3.3: The graduate self-evaluates and plans realistic career development goals, identifying
	strategies to overcome professional challenges.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• To develop knowledge and skills in the field of biodiversity conservation – from
	gene to plant community level
7.2 Specific objectives	To explore population and species diversity through genetics tools
	• To know some important endangered, vulnerable, rare, endemic plant and animal
	species included in the Red List for Romania or protected by international
	conventions.
	• To acquire the ability to identify habitats and to evaluate their conservation status
	• To understand the national network of natural protected areas from different
	I.U.C.N. categories

8. Content

8.1 Course	Teaching methods	Nr. of hours	Remarks
1. Biodiversity – concept, definitions and levels	Lecture	2	
2. Gene conservation – in situ, ex situ and sampling strategies	Lecture	2	
3. Natural protected areas – types and conservation objectives	Lecture	2	
4. Protected species – IUCN red list criteria; Bern Convention,	Lecture	2	
Habitats Directive, Romanian red lists of vascular plants			
5. Evaluation of ecosystem's biodiversity. Monitoring of protected	Lecture	4	
species and habitats			
6. Conservation planning	Lecture	2	
		•	

Bibliography

Alexander M., 2010. A Management Planning Guide. CMS Consortium, Talgarth, Wales, UK.

Dudley N. (ed.), 2008. Guidelines for Applying Protected Area Management Categories. Gland, Switzerland: IUCN, 86 pp. Geburek T., Turok, J., 2005. Conservation and management of forest genetic resources in Europe. Arbora Publishers.

Lindenmayer D.B., Margules C.R., Botkin D.B., 2000. Indicators of biodiversity for ecologically sustainable forest management. Conservation Biology 14 (4): 941-950.

Magurran A.E. 2004. Measuring biological diversity. Blackwell Science, Oxford.

Schulze E.D., Beck E., Buchmann N., Clemens S., Müller-Hohenstein K., Scherer-Lorenzen M., 2020. Biodiversity. In: Schultze et al. - Plant Ecology. pp. 743-823. Springer.

White T.L., Adams W.T., Neale D.B., 2007. Forest Genetics. CAB International.

8.2 Laboratory	Teaching-learning	Nr of hours	Remarks
	methods		
1. Measures of genetic diversity based on genetic markers	Laboratory analysis	2	
2. Protected areas, plant species and habitats. Survey and	Field Work	4	
mapping.			
3. Assessing the conservation status of species and habitats.	Field work.	4	
Biodiversity indices	Study case.		
	Exercises		
4. Writing the management plan for a protected area	Study case	4	

Bibliography

Baselga A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global ecology and biogeography, 19(1): 134-143.

European Commission, 2013. Interpretation manual of European Union habitats. Version Eur28.

Framstad E., Henle K., Henry P.Y., Lengyel S., Marzano M., Nowicki P., Schmeller D., 2008. Best practice for monitoring of species and habitats of Community interest. Report of the project no. 006463 EuMon EU-wide monitoring methods and systems of surveillance for species and habitats of Community interest. European Commission.

Hurdu B.I., et al. 2022. Ex situ conservation of plant diversity in Romania: A synthesis of threatened and endemic taxa - Supplementary Material 1. Journal for Nature Conservation 68():1-21

IUCN, 2017. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.1. Gland, Switzerland: IUCN. ix + 99pp.

Kent M., 2012. Vegetation description and data analysis. A practical approach. 2nd ed. Willey-Blackwell.

- Lee T., Middleton J., 2003. Guidelines for Management Planning of Protected Areas. IUCN Gland, Switzerland and Cambridge, UK
- Souheil H., Germain L., Boivin D., Douillet R. et al., 2011. Natura 2000 Management Plan. Methodological Guide for drawing up the Management Plan. Atelier Technique des Espaces Naturels. Montpellier. 120 p.
- TNC, 2007. Conservation Action Planning Handbook: Developing Strategies, Taking Action and Measuring Success at Any Scale. The Nature Conservancy, Arlington, VA

White T.L., Adams W.T., Neale D.B., 2007. Forest Genetics. CAB International.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional

associations, potential employers)

This course offers to graduated students the theoretical background and practical skills required in the field of nature conservation. The acquired competences will made them able to be employed in forest and biological research institutes, environmental agencies, administrative institutions of protected areas, genetic laboratory, public or private entities dealing with species and vegetation survey, impact studies, environmental consultancy.

10. Evaluation

Activity type	Evaluation criteria	Evaluation	Percentage of
		methods	the final grade
Course	Knowledge of advanced terminology and methods in biodiversity conservation	Exam	50 %
	Capability to use specific concepts and to evaluate study cases		

Laboratory	Ability to interpret genetic diversity indices	Portfolio	50 %			
	Ability to survey, identify and evaluate diversity of species and					
	habitats					
	Ability to conceive and assess a protected area management plan					
	Capability to organize the own research activity and to deliver					
	scientifically the results					
Minimal perfo	Minimal performance standard					
To apply a	To apply a set of performant methods for identification of forests ecosystems diversity					
To compose a scientific project for evaluation of conservation status of forests species and habitats						

This course outline was certified in the Department Board meeting on 29/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr. Alexandru Lucian CURTU	Prof.dr. Stelian Alexandru BORZ
Dean	Head of Department
Prof.dr. Alexandru Lucian CURTU	Prof.dr. Alexandru Lucian CURTU
Assoc.prof.dr. Victor Adrian INDREICA	Assoc.prof.dr. Victor Adrian INDREICA
Course holders	Holders of laboratory

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

, . .	
1.1 Higher education institution	TRANSILVANIA UNIVERSITY OF BRAȘOV
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial
	Measurements
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	Master
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master of Forest Sciences

2. Data about the course

2.1 Name of course		Aca	demic Skills and Ethics	s in R	esearch			
2.2 Course convenors		Pro	Prof. A.L. Curtu / Prof. M. Burada					
2.3 Seminar/ laboratory/ project		Pro	Prof. A.L. Curtu / Prof. M. Burada					
convenors								
2.4 Study year	I	2.5 Semester	I	2.6 Evaluation type	C	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	1	out of which	: 3.2 lecture	1	3.3 seminar/ laboratory/ project	-
3.4 Total number of hours in	14	out of which	: 3.5 lecture	14	3.6 seminar/ laboratory/ project	-
the curriculum						
Time allocation						hours
Study of textbooks, course supp	ort, bib	liography and	notes			25
Additional documentation in libraries, specialized electronic platforms, and field research			37			
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays			28			
Tutorial						6
Examinations		10				
Other activities						-
3.7 Total number of hours of stu	ıdent a	ctivity 1	106			

3.7 Total number of nours of student activity	
3.8 Total number per semester	120
3.9 Number of credits ^{₅)}	4

4. Prerequisites (if applicable)

4.1 curriculum-related	• none
4.2 competences-related	• English (level B2 and above)

5. Conditions (if applicable)

5.1 for course development	Student attendance is compulsory
5.2 for seminar/ laboratory/	• N.A.
project development	

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
ofessional competences	systems.
	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and
	technologies applied and anticipated in forest ecosystem management and forest production
	systems.
	Relevance:
	Understanding guidelines for scientific writing, including research articles and abstracts, directly supports
	effective dissemination of knowledge related to forest ecosystems and forest management.
	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and
	strategic systems.
	• LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and
	technologies applied and anticipated in economic, regulatory, political, and strategic systems in the
	forestry sector.
	Relevance:
	This applies to understanding research ethics and the principles of academic integrity , ensuring compliance
	with best practices in forestry-related research.
ā	
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and
	macro-social and institutional levels in the forestry sector.
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and
	with external partners.
	Relevance:
	Developing oral presentations and effective written communication fosters the ability to clearly convey
	research results at professional and academic events.
	CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and
	forestry research projects.
	• LO 2.1: The graduate applies ethical principles in professional activities.
	Relevance:
	This directly aligns with adhering to research ethics and principles of academic integrity when conducting and
	publishing research.
	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to
ies	the dynamics of the field and labor market demands.
sversal competenc	• LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
	• LO 3.3: The graduate self-evaluates and plans realistic career development goals, identifying
	strategies to overcome professional challenges.
	Relevance:
	Critical for professional growth , as students are trained to reflect on their work, maintain academic integrity,
ran	and develop skills for their evolving careers.
Η	

7.1 General course objective	To develop the students' competence to communicate effectively and		
	appropriately in professional settings, using English as a working language.		
7.2 Specific objectives	• To acquaint students to the metalanguage used to connect ideas/sentences		
	into larger chunks of text.		
	• To make fair and effective use of the specialist literature in their own texts.		
	• To develop their skills in disseminating the results of their own research in		
	written texts (abstracts) and via oral presentations.		

7. Course objectives (resulting from the specific competences to be acquired)

8. Content

8.1 Course	Teaching methods	Number of	Remarks
		hours	
Academic Integrity and Ethics in Research	Lecture, group	r	
	discussions	Z	
An introduction to communication in forestry-related research: guidelines for writing research articles in forest	Lecture, group	2	
sciences	discussions		
Aspects of written communication in research: abstracts	Lecture, text analysis,	1.	
(typology, structural organization, language).	in-class text writing	4	
Aspects of oral communication in research: conference	Lecture, video		
presentations (from planning to delivery)	watching,	6	
	in-class preparation		

8.1 Course

Selected bibliography & Webliography

Curtu, A. L., Burada M.(2020) Lecture notes (available on the e-learning platform).

Allan, Robert. N (2003) How to Prepare an Abstract for a Scientific Meeting in "How to Write a Paper", George M. Hall (ed.), 3rd edition, London: BMJ Books, pp. 72-84.

Burada, Marinela (2017) "Joint Authorship: A Glimpse into some Local Practices of Merit Attribution". In 13th

Conference on British and AmericanStudies - Language Diversity in a Globalized World. Newcastle: CambridgeScholars Publishing, pp. 198-216.

Halliday, M.A.K. & Hasan, R. (1976) Cohesion in English. London: Longman.

Jordan, R.R. (1980, 1990) Academic Writing Course. London: Collins ELT.

Lozano, G. A. (2014) "Ethics of using language editing services in an era of digital communication and heavily multiauthored papers". Science and Engineering Ethics 20: 363-377.

Moss, Fiona (2003) Titles, Abstracts, and Authors in "How to Write a Paper", George M. Hall (ed.), 3rd edition, London: BMJ Books, pp. 42-50

Pecorari, Diane (2010) Academic Writing and Plagiarism. A Linguistic Analysis. London/NY: Continuum International Publishing Group.

Swales, J.M. (1990) Genre Analysis. English in Academic and Research Settings. Cambridge: CUP.

http://www.css.cornell.edu/faculty/dgr2/teach/msc/HowToMakeAScientificPresentation21Nov2013_Print.pdf https://www.google.com/search?q=scientific+presentation+powerpoint&ei=TAQCWsTOO4b6aPLKh8AN&start=10 &sa=N&biw=1184&bih=510

8.2 Seminar/ laboratory/ project

Bibliography

N.A.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of this course have been developed in keeping with the strategy and vision of the Faculty of Silviculture and Forest Engineering, taking into account the suggestions made by the Romanian members of epistemic communities, professional associations and potential employers. The course contents are in line with the national qualification system and to the European qualification framework by a participative approach that included curricula discussions with Romanian and European experts in the field.
10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage			
			of the final grade			
10.4 Course	Accuracy, appropriacy and	Mid-term assessment of	40%			
	effectiveness of	written output				
	written/spoken output.	Final assessment of spoken	60%			
		output				
10.5 Seminar/ laboratory/	N.A.					
project						
10.6 Minimal performance standard						
Ability to convey written/spoken message accurately and with reasonable clarity.						

This course outline was certified in the Department Board meeting on 29/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.dr.eng. Alexandru Lucian CURTU	Prof.dr.eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof.dr.eng. Alexandru Lucian CURTU	Holder of seminar/ laboratory/ project
	N.A.
Prof. dr. Marinela BURADA (Faculty of Letters)	

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education	TRANSILVANIA UNIVERSITY OF BRAŞOV
institution	
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Forest Engineering, Forest Management Planning and
	Terrestrial Measurements
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Forestry for Multiple Purposes /Master in Forest
	Sciences

2. Data about the course

2.1 Name of cour	se		Forest stand dynamics							
2.2 Course conve	nor		dr. Petru Tudor Stăncioiu							
2.3 Seminar/	labor	atory/ project	ect dr. Petru Tudor Stăncioiu							
convenor										
2.4 Study year	1	2.5 Semester	2	2.6	Evaluation	Е	2.7	Course	Content ³⁾	SC
				type			statu	5	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	4	out of which: 3.2 lecture	2	3.3 semina project	r/ laboratory/	2
3.4 Total number of hours in	56	out of which: 3.5 lecture	28	3.6 semina	r/ laboratory/	28
the curriculum				project		
Time allocation						hours
Study of textbooks, course supp	ort, bil	bliography and notes				77
Additional documentation in libr	aries,	specialized electronic platfo	orms, ar	nd field research		28
Preparation of seminars/ labora	tories	/ projects, homework, pape	rs, porti	folios, and essays	;	44
Tutorial						3
Examinations						2
Other activities					0	
3.7 Total number of individual study hours 154						
3.8 Total number per semester		210				
3.9 Number of credits ⁵⁾		7				

4. Prerequisites (if applicable)

4.1 curriculum-related	Basic knowledge of forest ecology and silviculture
4.2 competences-related	English knowledge – write, read, speak (level – average to good)

5. Conditions (if applicable)

5.1 for course development	Reading the assigned text before class, each week.
5.2 for seminar/ laboratory/	Laboratory attendance is compulsory. Preparation for discussion based on assigned
project development	materials

6. Specific competences

	PC.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production systems.
	 LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in forest ecosystem management and forest production systems.
nces	 LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems.
etei	Relevance:
dmo	This directly aligns with understanding and applying concepts of stand dynamics , ecological succession, and
nal c	disturbance processes presented in the course. Students will be able to analyze stand structures and dynamics to solve complex forestry problems.
rofessic	PC.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and
ā	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector.
	Relevance:
	Students will develop decision-making skills for managing dynamic and multi-resource ecosystems, balancing natural processes with management-driven dynamics like close-to-nature silviculture.
	TC.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector.
	• LO 1.1: The graduate objectively evaluates the responsibilities and capacities of team members or collaborators.
	Relevance:
	The course involves case studies, and debates where students critically evaluate and defend arguments on forest dynamics issues.
tences	TC.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects.
mpe	• LO 2.3: The graduate can efficiently lead teams and research projects.
0	Relevance:
sversa	Through field trips, case study discussions, and scenario-based tasks, students build their capacity to
ran:	TC 2: Objective self-evaluation of the need for continuous professional development to adapt competences to
⊢	the dynamics of the field and labor market demands.
	• LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
	Relevance:
	By engaging with scientific literature and case studies, students learn to continuously improve their
	knowledge in forest stand dynamics and adapt to real-world challenges.

7.1 General course objective	• To develop critical thinking of the students regarding the dynamics of forest stands – a reality of nature
7.2 Specific objectives	 To help students understand the way forest stands react to natural and/or anthropogenic disturbances; To help students gain knowledge on predicting and decision making process in dynamic and complex forest ecosystems; To develop personal strengths in managing forests as dynamic and multi-resource ecosystems.

7. Course objectives (resulting from the specific competences to be acquired)

8. Content

8.1 Course	Teaching methods	Hours	Remarks
8.1.1. Introduction to the class. The process of change in ecosystems: Stand dynamics and Ecological succession (Oliver and Larson 1996 and Kimmins 2004)	Lecture – Power Point presentation	2	
8.1.2. The process of change in ecosystems: Ecological succession (cont.) (Kimmins 2004).	Lecture – Power Point presentation	2	
8.1.3. Plant interactions and limitations of growth (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.4. Tree architecture and growth (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.5. Disturbances and forest stand development (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.6. Ecosystem stability. Understanding and emulating natural forest disturbances (Larsen, J. B. 1995 and Kimmins 2004)	Lecture – Power Point presentation	2	
8.1.7. Overview of stand development patterns (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.8. Temporal and spatial patterns of tree invasion. Stand initiation stage: single cohort stands (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.9. Stem exclusion stage: single cohort stands, single-species stands and mixed- species stands (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.10. Understory reinitiation stage. Old growth stage. (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.11. Multicohort stands: behaviour of component cohorts. Development of multicohort stands (Oliver and Larson 1996)	Lecture – Power Point presentation	2	

8.1.12. Stand edges, gaps and clumps. Stand structure and biodiversity (Oliver and Larson 1996; Kimmins 2004; Hunter 1990; Stăncioiu 2022)	Lecture – Power Point presentation	2	
8.1.13. Forest patterns over long times and large areas (Oliver and Larson 1996)	Lecture – Power Point presentation	2	
8.1.14. Ecosystem management and landscape ecology (Kimmins 2004)	Lecture – Power Point presentation	2	

Bibliography

- 1. Hunter, M.L. Jr. 1990. *Wildlife, forests, and forestry: Principles of managing forests for biological diversity.* Prentice-Hall, Englewood Cliffs, NJ. 370pp
- 2. Kimmins, J. P. 2004. *Forest ecology*. A foundation for sustainable forest management and environmental ethics in forestry. New Jersey: Prentice Hall.
- Larsen, J. B. 1995. *Ecological stability of forests and sustainable silviculture*. Forest Ecology and Management 73: 85-96
- 4. Oliver, C. D., Larson, B. C. 1996. *Forest Stand Dynamics*. New York: John Wiley & Sons, Inc.
- 5. Stăncioiu, P.T. 2022. *Biodiversity Conservation in Forest Management*. In Giurcă A. and Dima, D.P. (Editors) *The Plan B for Romania's Forests and Society* (pp. 49-64). Transilvania University Press. Brasov, Romania

8.2 Laboratory	Teaching-learning methods	Hours	Remarks
8.2.1. Continuous change as a rule (equilibrium = transient and the exception)	Fieldtrip "Dupa Ziduri"	2	Fieldtrips will cover the most important issues presented in
8.2.2. Continuous change as a rule (equilibrium = transient and the exception)	Case study	2	the class. For case studies, students will
8.2.3. The process of change in ecosystems: Ecological succession. Types, models and theories.	Field trip "Pietrele lui Solomon"	2	read ahead texts provided by instructor and prepare to debate/defend the topic. The
8.2.4. Effects of "stop doing something" on ecosystem dynamics (Change from grassland to closed vegetation)	Case study	2	teacher will provide hints for discussion and will coordinate the discussions during the
8.2.5. Plant interactions and limitations of growth. Where do plants grow? What is growing space? Growing space and disturbances.	Field trip "Pietrele lui Solomon"	2	
8.2.6. Effects of "doing something" on ecosystem dynamics (Change from closed forest to open habitat – coppice effects on butterflies)	Case study	2	
8.2.7. Tree architecture and growth. Crown and tree development in side shade. Low vs. High shade. Release from side shade. Ecological niche	Field trip "Pietrele lui Solomon"	2	

8.2.8. Effects of "doing nothing" on ecosystem dynamics - The role of intact forests (Sustainable management vs. No management)	Case study	2	
8.2.9. Tree cooperation / mutualism? or competition? Trees and mycorrhizal networks	Case study	2	
8.2.10-11-12. Development stage, stand structure and biodiversity. Old-growth. Understory re-initiation. Stem exclusion	Field trip to Stramba UNESCO forest	6	
8.2.13 Disturbances, growing space and stand development	Field trip "Pietrele lui Solomon"	2	
8.2.14. Stand dynamics and silviculture (natural vs. management driven dynamics). Close-to-nature silviculture in a changing world. Save the planet!?	Case study	2	
Bibliography	1	I	-
Students will be provided with the texts for t	he case study they will debat	e/defend in a	class.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included curricula discussions with Romanian and European experts in the field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of the final grade
10.4 Course	Knowledge on advanced terminology in forest stand dynamics	Exam	70%
	• Ability to understand and use the concepts and terminology in forest stand dynamics		
	• Ability to analyze and make decisions on relevant case studies and contexts in forest stand dynamics		
10.5 Seminar/ laboratory/ project	Ability to critically evaluate a certain situation / statement / topic	Participation in class and at the fieldtrips	30%
	Ability to follow the presentation and ask questions / give answers		

	 Ability to build own arguments and to defend own ideas 		
	 Ability to evaluate own and others' arguments 		
10.6 Minimal perfor	mance standard		1
Students must be able to correctly describe a given concept related to stand dynamics;			
• Students must be able to understand and choose the appropriate measures for a given case from a list of options;			

• Students must be able to defend a decision in a certain case scenario.

This course outline was certified in the Department Board meeting on 29/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof. Dr. Alexandru Lucian CURTU	Prof. Dr. Alexandru Stelian BORZ
Dean	Head of Department
Dr. Petru Tudor STANCIOIU	Dr. Petru Tudor STANCIOIU
l ecture instructor	Seminar instructor

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

,	
1.1 Higher education institution	Transilvania University of Braşov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Forest Engineering, Forest Management Planning and
	Terrestrial Measurements
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master in Forest Science

2. Data about the course

2.1 Name of course			Integrated Pest Management					
2.2 Course convenor Assoc. dr. eng. Isaia			oc. dr. eng. Isaia Gabri	ela-A	urora			
2.3 Seminar/ laboratory/ project		Ass	Assoc. dr. eng. Isaia Gabriela-Aurora					
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	E	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of which:	3.2 lecture	1	3.3 seminar/ laboratory/ project	2
3.4 Total number of hours in	42	out of which:	3.5 lecture	14	3.6 seminar/ laboratory/ project	28
the curriculum						
Time allocation					hours	
Study of textbooks, course support, bibliography and notes					45	
Additional documentation in libraries, specialized electronic platforms, and field research					54	
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					50	
Tutorial					3	
Examinations					16	
Other activities					0	
3.7 Total number of hours of stu	ident a	ctivity 1	68			

3.8 Total number per semester	210
3.9 Number of credits ⁵⁾	7

4. Prerequisites (if applicable)

4.1 curriculum-related	-
4.2 competences-related	-

5. Conditions (if applicable)

5.1 for course development	Course attendance is facultative.
5.2 for seminar/ laboratory/	Laboratory attendance is compulsory;
project development	• Deadlines for portfolio submission will be commonly established by the teacher and
	students.

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems.
	 LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in forest ecosystem management and forest production systems.
	LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems.
	Delevance
	Relevance:
	(IDM) principles, and applying sustainable strategies for controlling posts while maintaining acceptate
	balance.
	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and
	strategic systems.
ences	 LO 2.1: The graduate understands the economic, regulatory, political, and strategic systems in the forestry sector.
pete	 LO 2.2: The graduate applies knowledge to implement regulatory frameworks, such as pesticide
	regulations, biodiversity strategies, and IPM policies.
al c	Relevance:
sion	The course addresses the social and economic constraints of pesticide use, highlighting regulatory compliance
ofes	and developing pest management plans that align with sustainable forestry practices.
Å,	
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and
	macro-social and institutional levels in the forestry sector.
	······································
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners.
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance:
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification,
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting results on pest identification.
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings.
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry management and
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects.
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities.
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities. LO 2.3: The graduate can efficiently lead teams and research projects.
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities. LO 2.3: The graduate can efficiently lead teams and research projects. The laboratory sessions, including identifying entomorphagous inserts and developing protocols for invasive.
	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities. LO 2.3: The graduate can efficiently lead teams and research projects. Relevance: The laboratory sessions, including identifying entomophagous insects and developing protocols for invasive species require teamwork leadership, and ethical scientific practices
ICes	 L0 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. L0 2.1: The graduate applies ethical principles in professional activities. L0 2.3: The graduate can efficiently lead teams and research projects. Relevance: The laboratory sessions, including identifying entomophagous insects and developing protocols for invasive species, require teamwork, leadership, and ethical scientific practices.
etences	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities. LO 2.3: The graduate can efficiently lead teams and research projects. Relevance: The laboratory sessions, including identifying entomophagous insects and developing protocols for invasive species, require teamwork, leadership, and ethical scientific practices. CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands.
mpetences	 L0 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. L0 2.1: The graduate applies ethical principles in professional activities. L0 2.3: The graduate can efficiently lead teams and research projects. Relevance: The laboratory sessions, including identifying entomophagous insects and developing protocols for invasive species, require teamwork, leadership, and ethical scientific practices. CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands. L0 3.1: The graduate keeps updated with advances in technioues and research in their field of practice.
al competences	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities. LO 2.3: The graduate can efficiently lead teams and research projects. Relevance: The laboratory sessions, including identifying entomophagous insects and developing protocols for invasive species, require teamwork, leadership, and ethical scientific practices. CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands. LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
ersal competences	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities. LO 2.3: The graduate can efficiently lead teams and research projects. Relevance: The laboratory sessions, including identifying entomophagous insects and developing protocols for invasive species, require teamwork, leadership, and ethical scientific practices. CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands. LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice. Relevance: The course involves case studies, bibliographic research, and practical applications, helping students
nsversal competences	 LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners. Relevance: Students collaborate on field trips and laboratory work, preparing and presenting results on pest identification, exotic species, and management strategies. Effective communication is essential for teamwork and presenting findings. CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects. LO 2.1: The graduate applies ethical principles in professional activities. LO 2.3: The graduate can efficiently lead teams and research projects. Relevance: The laboratory sessions, including identifying entomophagous insects and developing protocols for invasive species, require teamwork, leadership, and ethical scientific practices. CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands. LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice. Relevance: The course involves case studies, bibliographic research, and practical applications, helping students understand emerging challenges in pest management and solutions through lifelong learning.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	The goal of this course is to develop an understanding of the concepts and principles of IPM as a complex mix of practices and technologies to officiently manage pest populations.
	enciency manage pest populations.
7.2 Specific objectives	Understanding the terms relevant to integrated pest management
	Learning practical skills in organizing activities for monitoring the negative
	impact of pests on forest and environment
	• Understanding the different tactics used to manage pest insects in crop
	situations
	• Acquiring the ability to design an appropriate pest management strategy in a
	given situation
	Understanding the social and economic constraints of pesticide use
	Acquiring the ability of bibliographic documentation by consulting various
	sources

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. IPM-General definitions and concepts	Interactive lecture	2	
2. Exotic and invasive species. Definitions. European	Interactive lecture, video	2	
invasive species and their impact. Invasive insects			
in Romania.			
3. Pest forecast models in IPM . Forecast models	Interactive lecture, video	2	
based on degree-days. Case study - <i>Ips</i>			
<i>typographus</i> (The effects of the spruce bark beetle			
attacks. The current management and the need to			
change it. Systems / models for hazard or risk			
assessment. Phenological models)			
4. Biodiversity and IPM. What is biodiversity?	Interactive lecture, video	2	
Biodiversity at European level. Biodiversity in			
Romania. The importance of deadwood in the			
forest. Biodiversity - the basis for integrated pest			
management.			
5. IPM strategies and tactics. Essential elements in	Interactive lecture, video	2	
the development of IPM strategies. Fundamental			
criteria in IPM.			
6. Biological control of pests. Biological control:	Interactive lecture, video	2	
advantages and disadvantages. Pathogenic			
microorganisms (viruses, bacteria, fungi, protozoa).			
Entomophagous species. Case study - Ants &			
Biological control			
7. Pesticides and alternatives. Chemical method:	Interactive lecture, video	2	
advantages and disadvantages. Pesticide			
regulations in Romania. Biopesticides.			
Bibliography			

Arora, R., Singh, B., Dhawan, A. K., 2017 - *Theory and practice of integrated pest management*. Scientific Publishers. Brudea V., 2007 – *Combaterea biologică în managementul integrat al dăunătorilor, cu referire specială la ecosistemele silvice*. Editura Univ. "Ștefan cel Mare" Suceava, p. 240.

Coulson, R. N., Witter, J. A., 1984 – *Forest Entomology: Ecology and Management.* John Wiley and Sons, N.Y. Deguine, J. P., Aubertot, J. N., Flor, R. J., Lescourret, F., Wyckhuys, K. A., Ratnadass, A., 2021 - Integrated pest

management: good intentions, hard realities. A review. *Agronomy for Sustainable Development*, *41*(3), 38. Dent, D., Binks, R. H., 2020 - *Insect pest management*. Cabi.

Grant, W. P., Chandler, D., Bailey, A., Greaves, J., Tatchell, M., & Prince, G., 2010 - *Biopesticides: pest management and regulation*. CABI.

Koul, O., Dhaliwal, G. S., & Cuperus, G. W. (Eds.)., 2004 - *Integrated pest management: potential, constraints and challenges*. CABI.

Norris, R. F., Caswell-Chen E.P., Kogan, M., 2003 – *Concepts in integrated pest management*. Pearson Education, Inc., Upper Saddle River, New Jersey USA, p. 586.

Pedigo, L. P., Rice, M. E., Krell, R. K., 2021 - *Entomology and pest management*. Waveland Press.

Perju T., 2004 – *Dăunătorii din principalele agroecosisteme și combaterea lor integrată*. Editura Academic Pres, Cluj-Napoca, p. 496.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
Natural enemies of pests	Determining the	8	
	entomophagous insects		
	using a stereomicroscope.		
	Individual work		
Pest management decisions in Spruce stands	Laboratory and field	12	
	application		
Exotic and invasive insects	Field trip and individual	8	
	work		

Bibliography

Arora, R., Singh, B., Dhawan, A. K., 2017 - *Theory and practice of integrated pest management*. Scientific Publishers. Brudea V., 2007 – *Combaterea biologică în managementul integrat al dăunătorilor, cu referire specială la ecosistemele silvice*. Editura Univ. "Ștefan cel Mare" Suceava, p. 240.

Coulson, R. N., Witter, J. A., 1984 – *Forest Entomology: Ecology and Management.* John Wiley and Sons, N.Y. Deguine, J. P., Aubertot, J. N., Flor, R. J., Lescourret, F., Wyckhuys, K. A., Ratnadass, A., 2021 - Integrated pest

management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3), 38.

Dent, D., Binks, R. H., 2020 - Insect pest management. Cabi.

Grant, W. P., Chandler, D., Bailey, A., Greaves, J., Tatchell, M., & Prince, G., 2010 - *Biopesticides: pest management and regulation*. CABI.

Koul, O., Dhaliwal, G. S., & Cuperus, G. W. (Eds.)., 2004 - *Integrated pest management: potential, constraints and challenges*. CABI.

Norris, R. F., Caswell-Chen E.P., Kogan, M., 2003 – *Concepts in integrated pest management*. Pearson Education, Inc., Upper Saddle River, New Jersey USA, p. 586.

Pedigo, L. P., Rice, M. E., Krell, R. K., 2021 - *Entomology and pest management*. Waveland Press.

Perju T., 2004 – *Dăunătorii din principalele agroecosisteme și combaterea lor integrată*. Editura Academic Pres, Cluj-Napoca, p. 496.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included curricula discussions with Romanian and European experts in the field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage		
			of the final grade		
10.4 Course	General assessment criteria	Written exam	50%		
	(completeness and				
	correctness of knowledge,				
	logical consistency, fluency				
	of speech, force of				
	argumentation).				
	Specific criteria of discipline				
	Criteria that envisage the	Attendance at least 75% of	10%		
	attitudinal and motivational	courses			
	work of the student				
10.5 Seminar/ laboratory/	Specific criteria of discipline	Practical test - Identification of	10%		
project		entomophagous insects			
	Specific criteria of discipline.	Identification of bark beetles	20%		
	Criteria that envisage the	and non-target beetles			
	attitudinal and motivational	/Results interpretation			
	work of the student				
	Specific criteria of discipline	Completion of the protocol for	10%		
	Criteria that envisage the	exotic and invasive insects			
	attitudinal and motivational				
	work of the student				
10.6 Minimal performance standard					
Knowledge of the terms relevant to integrated pest management					
Knowledge of the pests and their impacts on forest					
Knowledge of the different tactics used to manage pests					
Knowledge of the social and economic constraints of pesticide use					

This course outline was certified in the Department Board meeting on 29/09/2024 and approved in the Faculty Board meeting on 30/09/2024

Prof.PhD.Eng. Alexandru Lucian CURTU,	Prof.PhD.Eng. Stelian Alexandru BORZ,
Dean	Head of Department
Assoc. Prof. PhD. Eng. Gabriela-Aurora ISAIA,	Assoc. Prof. PhD. Eng. Gabriela-Aurora ISAIA,
Course holder	Holder of seminar/ laboratory/ project

¹⁾ Field of study – select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);

- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Silviculture
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master in Forestry

2. Data about the course

2.1 Name of course		Management of Wildlife Population					
2.2 Course convenor		Pro	Professor dr. eng. Ovidiu lonescu				
2.3 Seminar/ laboratory/ project		Lec	Lecture dr. eng. Mihai Fedorca				
convenor							
2.4 Study year	I	2.5 Semester	П	2.6 Evaluation type	E	2.7 Course	Content ³⁾
						status	Attendance type ⁴⁾

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of which: 3.2 lecture	1	3.3 seminar/ laboratory/ project	2	
3.4 Total number of hours in	42	out of which: 3.5 lecture	14	3.6 seminar/ laboratory/ project	28	
the curriculum						
Time allocation					hours	
Study of textbooks, course supp	ort, bib	liography and notes			44	
Additional documentation in libraries, specialized electronic platforms, and field research				39		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays				46		
Tutorial					10	
Examinations				2		
Other activities						
3.7 Total number of individual stu	3.7 Total number of individual study hours 138					

3.8 Total number per semester	180
3.9 Number of credits ^{₅)}	6

4. Prerequisites (if applicable)

4.1 curriculum-related	•	Game animals and salmonids; Management of game animal population;
4.2 competences-related	٠	

5. Conditions (if applicable)

5.1 for course development	Video projection
5.2 for seminar/ laboratory/	•
project development	

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems
	LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies
	applied and anticipated in forest ecosystem management and forest production systems.
	LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies
	related to forest ecosystem management and forest production systems.
	Relevance to SYFE:
	This competence aligns with the course's focus on stand dynamics, yield modeling, and silvicultural
ces	interventions, emphasizing the practical application of theoretical knowledge to real-world forestry challenges.
eten	CP 2: Analysis characterization evaluation and modeling of forest-related economic regulatory political and
dmo	strategic systems
al c	LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies
sion	applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector.
ofes	LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies
Å	related to economic, regulatory, political, and strategic systems in the forestry sector.
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and
	macro-social and institutional levels in the forestry sector
	LO 1.1: The graduate objectively evaluates the responsibilities and capacities of team members or
	collaborators.
	LO 1.2: The graduate organizes activities based on employee qualifications, task complexity, and agreed time
	and performance norms.
	LO 1.3: The graduate employs effective communication strategies and techniques within the team and with
	external partners.
	Relevance to SYFE:
	The course involves fieldwork and collaborative analysis, enhancing students' ability to organize and
ces	communicate within a team and with external stakeholders in forestry operations.
eten	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to
duc	the dynamics of the field and labor market demands
al co	LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
/ers	LO 3.2: The graduate identifies opportunities for continuous professional development.
ansv	LO 3.3: The graduate self-evaluates and plans realistic career development goals, identifying strategies to
Ľ	overcome professional challenges.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	Acquisition of theoretical and practical knowledge related to the silvic and
	technical management of the forests and its products, acquisition of
	cognitive and practical abilities
7.2 Specific objectives	Knowledge of the evolution of game keeping in Romania.
	Knowledge of the evolution of hunting law.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Introduction	Video projection	2	
2. Food and nutrition	Video projection	2	
3. Dispersal and distribution	Video projection	2	

4. Predation	Video projection	2	
5. Counting animals	Video projection	2	
6. Experimental management	Video projection	2	
7. Wildlife harvesting	Video projection	2	

Bibliography

1. Fryxell, John M., Anthony RE Sinclair, and Graeme Caughley. Wildlife ecology, conservation, and management. John Wiley & Sons, 2014.

2. Morrison, Michael L., Bruce Marcot, and William Mannan. "Wildlife-habitat relationships: concepts and applications." (2012).

3. Mills, L. Scott. Conservation of wildlife populations: demography, genetics, and management. John Wiley & Sons, 2012.

	1	
Teaching methods	Number of	Remarks
	hours	
Video projection.	4	
Interactive discussions		
Video projection.	4	
Interactive discussions		
Video projection.	4	
Interactive discussions		
Video projection.	4	
Interactive discussions		
Video projection.	4	
Interactive discussions		
Video projection.	4	
Interactive discussions		
Video projection.	4	
Interactive discussions		
	Teaching methods Video projection. Interactive discussions Video projection. Interactive discussions Video projection. Interactive discussions Video projection. Interactive discussions Video projection. Interactive discussions Video projection. Interactive discussions Video projection. Interactive discussions	Teaching methodsNumber of hoursVideo projection.4Interactive discussions4Interactive discussions4Video projection.4Interactive discussions4Interactive discussions4Interactive discussions4Interactive discussions4Interactive discussions4Interactive discussions4Interactive discussions4

Bibliography

1. Fryxell, John M., Anthony RE Sinclair, and Graeme Caughley. Wildlife ecology, conservation, and management. John Wiley & Sons, 2014.

2. Morrison, Michael L., Bruce Marcot, and William Mannan. "Wildlife-habitat relationships: concepts and applications." (2012).

3. Mills, L. Scott. Conservation of wildlife populations: demography, genetics, and management. John Wiley & Sons, 2012.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The course provides comprehensive data for the identification of all aspects of management and research of species of hunting interest in Romania and worldwide and their roles in the ecosystem.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course		Standardised test	70

10.5 Seminar/ laboratory/		Project	30
project			
10.6 Minimal performance standard			
•			

This course outline was certified in the Department Board meeting on 29/09/2024 and approved in the Faculty Board meeting on 30./09/2024

Dean University professor dr.eng. Curtu Alexandru Lucian Head of Department, Associate professor dr. eng. Gurean Dan Marian

Course holder Professor dr.eng. Ovidiu IONESCU Holder of seminar Lecture dr.eng. Mihai FEDORCA

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: BA/MA/PhD;
- ³⁾ Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the MA level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 30 study hours (teaching activities and individual study).

1.1 Higher education institution	Transivalia Oniversity of Diasov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial
	Measurements
1.4 Field of study	Forestry
1.5 Study level	Master
1.6 Study programme/Qualification	Multiple Purpose Forestry / Master in Forest Sciences

2. Data about the course

2.1 Name of cour	se		Management of Timber Ha			sting Operations			
2.2 Course conve	nor		Prof. dr. eng. Stelian Alexandru Borz			Borz			
2.3 Laboratory			Prof. dr. eng. Stelian Alexan			Borz			
2.4 Study year	Ι	2.5 Semester	Ш	2.6 Evaluation type	E	2.7 Course	Content	PC	
						status	Attendance type	CPC	

3. Total estimated time

3.1 Number of hours per week	3	out of whi	ch: 3.2 leo	ture	1	3.3 laboratory		2
3.4 Total number of hours in	3.4 Total number of hours in 42 out of whi		ch: 3.5 leo	ture	14	3.6 laboratory		28
the curriculum								
Time allocation h							hours	
Study of textbooks, course support, bibliography and notes 56						56		
Additional documentation in libraries, specialized electronic platforms, and field research						38		
Preparation of portfolios, and essays						26		
Tutorial 8						8		
Examinations					10			
3.7 Total number of hours of student activity 138								
3.8 Total number per semester			180					
3.9 Number of credits			6					

4. Prerequisites

4.1 curriculum-related	•
4.2 competences-related	•

5. Conditions

5.1 for course development	Course attendance is facultative
5.2 for laboratory	Laboratory attendance is compulsory
	• Deadlines for the portfolio submission will be commonly established by the teacher
	and students

6 Specific competences

• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems.

Relevance to MTHO:

This competence aligns with the discipline's focus on **timber harvesting which is described as a system shaped by economic, environmental, and social sustainability**, which includes the characterization, analysis, modeling, and evaluation of timber harvesting systems under the main pillars of sustainability.

CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and strategic systems

- LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector.
- LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector. Relevance to MTHO:

This competence aligns with the discipline's focus on **timber harvesting which is described at several levels of decision making, and includes perspectives in timber harvesting shaped by economic, regulatory, and strategic levels**.

CT.1: Mastery of skills required for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector

- **LO 1.1:** The graduate objectively evaluates the responsibilities and capacities of team members or collaborators.
- **LO 1.2:** The graduate organizes activities based on employee qualifications, task complexity, and agreed time and performance norms.
- **LO 1.3:** The graduate employs effective communication strategies and techniques within the team and with external partners.

Relevance to MTHO:

The discipline involves **field work and/or work in simulated environments**, enhancing the ability to self-organize and communicate within a team and with external stakeholders.

. Course objectives	5
---------------------	---

Transversal competences

7. Course objectives	
7.1 General course objective	• To familiarize the students with the advanced knowledge and the state-of-
	art approaches used in the engineering and management of forest
	operations.
7.2 Specific objectives	• To define, elaborate (deepen) and use the concepts, methods, instruments,
	and approaches in forest operations engineering and management;

Professional competences

1.2. Role of forests		
1.3. Assessment criteria		
1.4. Decision making in three steps		
1.5. System theory as a basic concept		
2. Harvesting chains – description and classification	Lecture	2 hours
2.1. Functions of harvesting		
2.2. Sub-functions of harvesting		
2.3. Tools and machines for harvesting		
2.4. Degree of mechanization		
2.5. Degree of mechanization with composed systems		
2.6. The functiogram		
2.7. Process chaining		
3. Economic suitability	Lecture	2 hours
3.1. Economic criteria		
3.2. Machine cost calculation		
3.2.1. Productivity		
3.2.2. Additional costs		
3.2.3. Total system costs & exceptions		
4.Ecological suitability	Lecture	2 hours
4.1. Risks, side-effects, and damage		
4.2. Damage to forest soils		
4.3. Soil repair and prevention		
4.4. Avoiding soil damage		
4.5. Solutions for trafficable areas		
5. Social suitability	Lecture	2 hours
5.1. Societal compatibility		
5.2. Working stress		
5.3. Strain at work		
5.4. Social suitability		
6. Path to the optimal solution	Lecture	2 hours
6.1. Selecting the best option		
6.2. Target driven optimality		
7.Recapitulation	Lecture	2 hours
Bibliography		
Erler J., Spinelli R., Borz S.A., Mederski P. (2023). Techno	diversity. Transilvania Universit	zy Press, 172 p.
8.2 Laboratory	Teaching-learning methods	Remarks
1.Outline & assignments	Presentation	2 hours
1.1. Outline		
1.2. Assignments		
2. Harvesting equipment at work in real environments	On-site presentation and	8 hours

4.1. Group assignment and scenario assumptions	on Case Studies	
4.2. Group work on developing an optimal harvesting		
chain		
Bibliography		

Erler J., Spinelli R., Borz S.A., Mederski P. (2023). Technodiversity. Transilvania University Press, 172 p.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations, and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included discussions with Romanian and European experts in the field. An important part of the course and its specific activities were developed in the framework of the Erasmus + Technodiversity project as a common European understanding and agreement on the teaching activities at the master level in Forest Operations.

				1
Activity type		10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
				of the final grade
10.4 Course	•	Knowledge on advanced	Oral exam	40 %
		terminology in forest		
		operations		
	•	Capability to properly use		
		the concepts and		
		terminology in forest		
		operations		
	•	Capability to analyse and		
		interpret relevant case		
		studies and contexts in		
		forest operations		
	•	Capability to build		
		argumentations on		
		complex case studies		
	•	Capability to evaluate,		
		argue and make decisions		
		on complex case studies		
10.5 Laboratory	•	Development of own	Portfolio	60 %
		knowledge on the course		
		and laboratory contents		

10. Evaluation

	• Capability to build own
	arguments and to defend
	own ideas
	 Capability to evaluate
	own and others'
	arguments
10 C Minimal neufourness stonday	1

10.6 Minimal performance standard

- Students will be able to correctly describe and argument the effectiveness of a given timber harvesting subprocess;
- Students will be able to choose the appropriate harvesting equipment for a given case from a limited list of options;
- Students will be able to correctly describe the workflow of a functiogram.

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. dr. eng. Alexandru Lucian CURTU	Prof. dr. eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof. dr. eng. Stelian Alexandru BORZ	Prof. dr. eng. Stelian Alexandru BORZ
Course holder	Holder of seminar/ laboratory/ project

- Field of study select one of the following options: Bachelor / Master / Doctorate(to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorate;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options:FC (fundamental course) / DC (course in the study domain)/ SC (specialtycourse)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC(advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC(non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

,, 0	
1.1 Higher education institution	UNIVERSITY TRANSILVANIA OF BRAŞOV
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Forest Engineering, Forest Management Planning and Terrestr
	Measurements
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master in Forest Sciences

2. Data about the course

2.1 Name of cour	ne of course Advanced Forest Biometry							
2.2 Course convenor			Pro	Prof. dr. eng. Maria Magdalena Vasilescu				
2.3 Seminar/ laboratory/ project			Pro	f. dr. eng. Maria Magda	alena	Vasilescu		
convenor								
2.4 Study year	1	2.5 Semester	2	2.6 Evaluation type	С	2.7 Course	Content ³⁾	AC
					2	status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	rs per week 2 out of which: 3.2 lecture 1 3.3 seminar/laboratory/project		1				
3.4 Total number of hours in	28	out of whic	h: 3.5 lectur:	re	14	3.6 seminar/ laboratory/ project	14
the curriculum	ılum 🛛 🔤						
Time allocation							hours
Study of textbooks, course supp	ort, bib	liography an	d notes				28
Additional documentation in libraries, specialized electronic platforms, and field research			28				
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays		29					
Tutorial							2
Examinations		4					
Other activities							-
3.7 Total number of hours of stu	ident a	ctivity	92				

3.7 Total number of hours of student activity			
3.8 Total number per semester	120		
3.9 Number of credits ⁵⁾	4		

4. Prerequisites (if applicable)

4.1 curriculum-related	•
4.2 competences-related	•

5. Conditions (if applicable)

5.1 for course development	•	Course attendance is facultative.
5.2 for seminar/ laboratory/	•	Laboratory attendance is compulsory;
project development	•	Deadlines for portfolio submission will be commonly established by the teacher and
		students.

6. Specific competences

	CD 4. Analysis sharestantian and unting and modeling of forest approximation and to the inclusion to us durities
	CP. I: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems
	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and
	technologies applied and anticipated in forest ecosystem management and forest production
	systems.
	Relevance:
	• Aligned with Course Objectives : Familiarization with state-of-the-art tools in forest biometry,
	recent tools for forest mensuration (e.g., laser hypsometers, portable laser scanners).
	• Course Content : Topics like stem profile models, taper functions, and volume/biomass
	equations for European tree species.
	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and
	technologies related to forest ecosystem management and forest production systems.
	Relevance:
	o Emphasized in Seminar/Practical Activities: Field measurements using modern tools, and case
	studies on taper functions and stem volume equations.
	• Evaluation : Capability to correctly use modern instruments and methods for studies on stem
	profiles and volume estimation (portfolio evaluation).
S	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and
nce	strategic systems
ete	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and
dmc	technologies related to economic, regulatory, political, and strategic systems in the forestry sector.
al co	
ion	While the course primarily focuses on biometry, understanding and adopting advanced modeling
ess	techniques can be us indirect explications in economic and requilatery decision making requiring
Jrof	techniques can have multect applications in economic and regulatory decision-making regarding forestry.
-	

	TC.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector.
	• LO 1.1: The graduate objectively evaluates the responsibilities and capacities of team members or collaborators.
	Relevance:
	The course involves case studies, and debates where students critically evaluate and defend arguments on advanced forest biometry issues.
	TC.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects.
	• LO 2.3: The graduate can efficiently lead teams and research projects.
	Relevance:
	Through field trips, case study discussions, and scenario-based tasks, students build their capacity to collaborate and lead discussions on advanced tools used in measurements, and methods used in stem profile, volume and biomass estimation.
ces	TC.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands.
mpeten	• LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
al co	Relevance:
Transversa	By engaging with scientific literature and case studies, students learn to continuously improve their knowledge in advanced forest biometry and adapt to real-world challenges.
•	

7.1 General course objective	• To familiarize the students with the advanced knowledge and the state-of-
	art approaches used in forest biometry.
7.2 Specific objectives	• To define, elaborate and use the concepts, methods, instruments and
	approaches in forest biometry;
	To understand the context of recent tools developments on advanced
	research;
	• To develop the personal and interpersonal skills related to engineering,
	research and social dimensions.

7. Course objectives (resulting from the specific competences to be acquired)

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Recent development in instrumentation	Lecture	2 hours	
1.1. Digital calipers			
1.2. Laser hypsometers and calipers			
1.3. Instruments based on ultrasound technology			
1.4. Portable laser scanner			
1.5. Discussion			
2. Stem profile models	Lecture	4 hours	
2.1. Introduction			
2.2. Taper functions			
2.3. Polynomials and segmented polynomials			
2.4. Discussion			

3. Volume equations for tree species in Europe	Lecture	4 hours							
3.1. Introduction									
3.2. Volume equations									
.2.1. With one predictor variable									
3.2.2. With two predictor variables	.2.2. With two predictor variables								
3.2.3. With more than two predictor variables									
3.3. Merchantable stem volume equation									
3.4. Discussion									
4. Biomass equations for tree species in Europe	Lecture	2 hours							
4.1. Introduction									
4.2. Tree-level regression models used to estimate									
the aboveground biomass and total tree									
biomass									
4.3. Biomass estimation functions for tree parts									
4.4. Discussion									
5. Remote sensing in forest mensuration	Lecture	2 hours							
5.1. Introduction									
5.2. Ground measurement of tree stem and tree									
parts using handheld laser scanner									
5.3. Discussion									
Bibliography									
1. Beltran H A, Chauchard L, Iaconis A, Pastur	G M (2017). Volume and tape	er equations for comm	nercial stems of						

 Beltran H A, Chauchard L, Iaconis A, Pastur G M (2017). Volume and taper equations for commercial st Nothofagus obliqua and N. alpina. *Cerne*, 23, 299-309.

- 2. Burkhart H, Tomé M (2012). Modeling forest trees and stands. Springer, Dordrecht, NL, pp. 457.
- 3. Giurgiu V, Decei I, Drăghiciu D (2004). Metode și tabele dendrometrice [Methods and tables of forest mensuration]. Ed. Ceres, Bucharest, RO, pp. 575. [in Romanian]
- Gonçalves A F A, Fernandes M R D M, Silva J P M, Silva G F D, Almeida A Q D, Cordeiro N G, ... Scolforo J R S (2019). Wood volume estimation in a semidecidual seasonal forest using MSI and SRTM data. *Floresta e Ambiente*, 26(spe 1), e20180379.
- 5. Husch B, Beers Th, Kershaw J (2003). Forest mensuration. John Wiley & Sons, New Jersey, USA, pp. 433.
- 6. Jagodziński A M, Dyderski M K, Gęsikiewicz K, Horodecki P (2018). Tree-and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. *Forests*, *9*(10), 587.
- Mohd Zaki N A, Latif Z A, Suratman M N (2018). Modelling above-ground live trees biomass and carbon stock estimation of tropical lowland Dipterocarp forest: integration of field-based and remotely sensed estimates. *International Journal of Remote Sensing*, 39(8), 2312-2340.
- Padmakumar B, Sreekanth N P, Shanthiprabha V, Paul J, Sreedharan K, Augustine T, ... Thomas A P (2018). Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. *iForest-Biogeosciences and Forestry*, 11(4), 534.
- 9. Philip M (1994). Measuring trees and forests. Cab International, London, UK, pp. 320.
- 10. Poudel K P, Temesgen H, Gray A N (2018). Estimating upper stem diameters and volume of Douglas-fir and Western hemlock trees in the Pacific northwest. *Forest Ecosystems*, *5*, 1-12.
- Quiñonez-Barraza G, Zhao D, Santos-Posadas H M, Santiago-García W, Tamarit-Urías J C, Nájera-Luna J A (2019). Compatible taper, volume, green weight, biomass and carbon concentration system for Quercus sideroxyla Bonpl. *Revista Chapingo serie ciencias forestales y del ambiente*, 25(1), 49-69.
- 12. van Laar A, Akça A (2007). Forest mensuration. Springer, Dordrecht, NL, pp. 383.
- 13. West P W (2009). Tree and forest measurement. Springer-Verlag, Berlin, DE, pp. 191.
- 14. Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005). Biomass and stem volume equations for tree

species in Europe. Silva Fennica Monographs 4, pp. 63.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
1. Field measurement using modern tools and non-	Case study	8 hours	
destructive methods in order to conduct studies on			
taper functions and stem volume equations			
2. Portfolio specifications and preparation	Individual work	6 hours	

Bibliography

- 1. Beltran H A, Chauchard L, Iaconis A, Pastur G M (2017). Volume and taper equations for commercial stems of Nothofagus obliqua and N. alpina. *Cerne*, *23*, 299-309.
- 2. Burkhart H, Tomé M (2012). Modeling forest trees and stands. Springer, Dordrecht, NL, pp. 457.
- 3. Giurgiu V, Decei I, Drăghiciu D (2004). Metode și tabele dendrometrice [Methods and tables of forest mensuration]. Ed. Ceres, Bucharest, RO, pp. 575. [in Romanian]
- Gonçalves A F A, Fernandes M R D M, Silva J P M, Silva G F D, Almeida A Q D, Cordeiro N G, ... Scolforo J R S (2019). Wood volume estimation in a semidecidual seasonal forest using MSI and SRTM data. *Floresta e Ambiente*, 26(spe 1), e20180379.
- 5. Husch B, Beers Th, Kershaw J (2003). Forest mensuration. John Wiley & Sons, New Jersey, USA, pp. 433.
- 6. Jagodziński A M, Dyderski M K, Gęsikiewicz K, Horodecki P (2018). Tree-and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. *Forests*, *9*(10), 587.
- Mohd Zaki N A, Latif Z A, Suratman M N (2018). Modelling above-ground live trees biomass and carbon stock estimation of tropical lowland Dipterocarp forest: integration of field-based and remotely sensed estimates. *International Journal of Remote Sensing*, 39(8), 2312-2340.
- 8. Padmakumar B, Sreekanth N P, Shanthiprabha V, Paul J, Sreedharan K, Augustine T, ... Thomas A P (2018). Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. *iForest-Biogeosciences and Forestry*, *11*(4), 534.
- 9. Philip M (1994). Measuring trees and forests. Cab International, London, UK, pp. 320.
- 10. Poudel K P, Temesgen H, Gray A N (2018). Estimating upper stem diameters and volume of Douglas-fir and Western hemlock trees in the Pacific northwest. *Forest Ecosystems*, *5*, 1-12.
- Quiñonez-Barraza G, Zhao D, Santos-Posadas H M, Santiago-García W, Tamarit-Urías J C, Nájera-Luna J A (2019). Compatible taper, volume, green weight, biomass and carbon concentration system for Quercus sideroxyla Bonpl. *Revista Chapingo serie ciencias forestales y del ambiente*, 25(1), 49-69.
- 12. van Laar A, Akça A (2007). Forest mensuration. Springer, Dordrecht, NL, pp. 383.
- 13. West P W (2009). Tree and forest measurement. Springer-Verlag, Berlin, DE, pp. 191.
- 14. Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005). Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4, pp. 63.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included curricula discussions with Romanian and European experts in the field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Knowledge on advanced	Exam	50 %
	terminology in forest		
	biometry		
	Capability to properly use the		
	concepts and terminology in		
	recent tools development,		
	stem profile models, volume		
	and biomass equations for		
	tree species in Europa		
	Capability to build		
	argumentations on complex		
	case studies		
	Capability to argue and make		
	decisions on complex case		
	studies related to tree stem		
	and tree parts modeling and		
	analysis using recent		
	development in		
	instrumentation		
10.5 Seminar/ laboratory/	Development of own	Portfolio	50 %
project	knowledge on the course and		
	laboratory contents		
	Capability to analyse the		
	stem volume and to interpret		
	the controversial situations		
	Capability to correctly use		
	the methods of volume		
	estimation and research on		
	stem profile		
	Capability to build own		
	arguments and to defend		
	own ideas		
10.6 Minimal performance standa	ırd		
Students will be able to correc	tly use the modern instruments;		
• Students will be able to use th	e appropriate methods of volume	and biomass estimation.	

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof. Dr. Eng. Alexandru Lucian CURTU	Prof. Dr. Eng. Stelian Alexandru BORZ
Dean	Head of Department

Prof. Dr. Eng. Maria Magdalena Vasilescu	Prof. Dr. Eng. Maria Magdalena Vasilescu
Course holder	Holder of laboratory

- Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (speciality course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	TRANSILVANIA UNIVERSITY OF BRAŞOV
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Silviculture
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Multiple Purpose Forestry/Master in Forest Sciences

2. Data about the course

2.1 Name of course			For	est Management and (Chain	of Custody Certi	fication	
2.2 Course convenor			Pro	f. Dr. Ioan Vasile Abruc	lan			
2.3 Seminar/ laboratory/ project			Pro	Prof. Dr. Ioan Vasile Abrudan / Assoc. prof. Aureliu Florin Halalisan				
convenor								
2.4 Study year	2	2.5 Semester	1	2.6 Evaluation type	E	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	out of which: 3.2 lecture	e 1	3.3 seminar/ laboratory/ project	2	
3.4 Total number of hours in	42	out of which: 3.5 lecture	e 14	3.6 seminar/ laboratory/ project	28
the curriculum					
Time allocation					hours
Study of textbooks, course supp	ort, bib	liography and notes			47
Additional documentation in libraries, specialized electronic platforms, and field research					
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays					
Tutorial					
Examinations					8
Other activities					0
3.7 Total number of hours of student activity 138					
3.8 Total number per semester		180			

3.9 Number of credits ⁵⁾	6

4. Prerequisites (if applicable)

4.1 curriculum-related	• NA
4.2 competences-related	• NA

5. Conditions (if applicable)

5.1 for course development	Course attendance is optional/facultative.
5.2 for seminar/ laboratory/	Laboratory attendance is compulsory;
project development	• Deadline for the thematic report submission will be commonly established by the lecturer and students.

6. Specific competences

o. specii	ic competences					
	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical systems related to					
	product traceability.					
	• LO 1.1: The graduate demonstrates advanced knowledge of terminology and standards used in forest					
	management and chain of custody certification.					
	• LO 1.2: The graduate applies concepts, standards, and tools to analyze and interpret forest					
	management and product traceability systems in real-world contexts.					
	Relevance:					
	The course addresses forest certification systems (FSC, PEFC), providing students with the technical					
	knowledge to evaluate forest sustainability standards and product chain of custody processes.					
	CP.4: Applications of new and emerging technologies in the evaluation, development, and implementation of					
	forest management systems.					
ces	• LO 4.1: The graduate designs and evaluates certification compliance systems for forest management					
ten	units and wood-processing enterprises.					
npe	• LO 4.2: The graduate demonstrates the ability to use decision-making tools for implementing and					
LO CO	monitoring product chain of custody certification systems.					
onal	Relevance:					
ssic	Hands-on activities, such as fieldwork in forest districts and wood-processing enterprises, allow students to					
Profe	apply knowledge to practical certification processes.					
_	CT 1. Effective communication and networking in interdisciplinary and institutional environments					
	• 1013. The graduate effectively presents and defends certification-related reports and findings to					
	forestry stakeholders					
	Relevance.					
	The course emphasizes preparing and presenting thematic reports , enhancing communication skills essential					
ICes	for collaboration with certification bodies and forestry professionals					
eten	CT 3: Commitment to lifelong learning and adaptation to sectoral dynamics and labor market demands					
mpe	• 1031: The graduate keeps undated on evolving certification schemes standards and their					
cor	annlications					
ersa						
JSVE	The inclusion of international experts and case studies festors continuous professional development					
Trar						

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• To familiarize the students with the advanced knowledge and the state-of-
	art approaches used in forest management and chain of custody certification
7.2 Specific objectives	• To define, elaborate (deepen) and use the concepts, methods, instruments
	and approaches in forest management and chain of custody certification;
	• To understand the context of forest management and wood tracing as part
	of larger systems;
	• To develop the personal and interpersonal skills related to engineering,
	research and social dimensions.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1.Introduction to forest management and	Lecture	2 hours	

chain of custody certification 1.1. Definitions and origins 1.2.Overview of the existing certification			
schemes			
2.Forest certification schemes: from standard	Lecture	4 hours	National and
to label			international
2.1. Organisation and structure of a forest			experts will be invited
management certification scheme			to deliver
2.2. Forest management standards			presentations and
2.3. Accreditation			views
2.4. Certification			
2.5. Labelling			
3.The main forest certification schemes in	Lecture	2 hours	
Europe			
3.1.FSC Scheme			
3.2.PEFC scheme			
4.Chain of custody certification and product	Lecture	2 hours	
tracking			
4.1. Chain of custody certification			
4.2. Product tracing and managing claims and			
labels			
5. Practical aspects of forest management	Lecture	1 hours	
and chain of custody certification: from			
getting started to getting the certificate			
6. Impact, costs and benefits of forest	Lecture	1hours	
certification			
7.Evolution of forest management and chain	Lecture	2 hours	
of custody in Romania and world-wide			
8. Forest certification in the wider context of	Lecture	2 hours	
sustainable forest management: governance,			
policy and regulatory framework			

Bibliography:

ABRUDAN, I.V., TRIFOI, F., FLORESCU, G., NEGRUTIU, F. (1999). Certification of forest management practices in Persani Mountains - Problems and Solutions. *The Bulletin of the Transilvania University of Brasov*. Vol. 6 (41) - New Series, Series A, ISSN 1223-9631, pg. 203-206.

ABRUDAN, I.V., TRIFOI, F., NEGRUTIU, F., FLORESCU, G. (2000). Certification of the Chain of Custody: A Study in Brasov Area. *The Bulletin of the Transilvania University of Brasov*. Vol. 7 (42) - New Series, Series A, ISSN 1223-9631, pg. 209-216.

ABRUDAN, I.V. (2003). Forest Certification in Romania and the Market Perspective. *Proceedings of the International Seminar: Strategies for the Sound Use of Wood*, Poiana Brasov, Romania, pg. 329-335.

HALALISAN, A.F., MARINCHESCU, M., ABRUDAN, I.V. (2012): The evolution of forest certification: A short review. *The Bulletin of the Transilvania University of Brasov.* Series II, Vol. 5 (54), No.2, ISSN 2065-2135, pg. 35-42.

HALALISAN, A.F., MARINCHESCU, M., POPA, B., ABRUDAN, I.V. (2013): Chain of Custody certification in Romania: profile and perceptions of FSC certified companies. *International Forestry Review*. ISSN 14655489, DOI: 10.1505/146554813807700137, Volume 15, No.3, pg. 305-314

HALALISAN, A.F., IORAS, F., KORJUS H., AVDIBEGOVIC, M., MARIC, B., PEZDEVSEK MALOVRH S., ABRUDAN, I.V. (2016). An Analysis of Forest Management Non-Conformities to FSC Standards in Different European Countries. *Notulae* *Botanicae Horti Agrobotanici Cluj-Napoca*. Volume 44 Issue 2, ISSN 0255-965X, pg. 634-639. HALALISAN, A.F., ABRUDAN, I.V., POPA, B. (2018): Forest Management Certification in Romania: Motivations and Perceptions. *Forests*. ISSN 1999-4907 (Print), DOI: 10.3390/f9070425. Volume 9 (7) 425 (July 2018), pg. 2-16 HALALISAN, A.F., POPA, B., HERAS-SAIZARBITORIA, I., IORAS, F., ABRUDAN, I.V. (2019): Drivers, perceived benefits and impacts of FSC Chain of Custody Certification in a challenging sectoral context: the case of Romania. *International Forestry Review*. ISSN 14655489, DOI: 10.1505/146554819826606595, Volume 21, No.2, pg. 195-211 IORAS, F., ABRUDAN, I.V. (2007). High Conservation Value Forest Identification and Management in Romania. *Forest and sustainable development*. Editura Universitatii Transilvania din Brasov, ISSN 1843-505X, pg. 649-658 NUSSBAUM, R., SIMULA, M. (2005). The forest certification handbook. Earthscan, UK. 283p. www.fsc.org www.pefc.org

8.2 Laboratory	Teaching methods	Number of hours	Remarks
1. Practical aspects of forest management	Case study	12 hours	Part of the activities
certification (related to forest district)			will be carried on in the
			forest district
2. Practical aspects of chain of custody	Case study	12 hours	Part of the activities
certification (related to harvesting company /			will be carried on in the
wood processing company)			harvesting area/
			company
3. A thematic report on a specific aspect of	Case study	4 hours	
forest management or chain of custody			
certification			
Bibliography:			
Procedures available at:			
www.fsc.org			
www.pefc.org			

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The content of this course has been developed in accordance with the strategy and vision of the Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional forestry associations and potential employers. Furthermore, the course content was aligned to the existing national and international trends in forest management and product tracing and based on the realities of the sectors of forest management, wood harvesting and processing.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage
		methods	of the final grade
10.4 Course	• Knowledge of basic and advanced	Written and oral	
	terminology in forest management and chain	exam/presentation	
	of custody certification		CO2
	• Capability to properly use the concepts and		60%
	terminology in forest management and chain		
	of custody certification		

	 Capability to analyze and interpret relevant case studies and contexts in forest management and chain of custody certification Capability to build argumentations and to evaluate, argue and make decisions on evaluate. 								
10.5 Seminar/ laboratory/ project	 Development of own knowledge on the course and laboratory contents regarding thematic forest management and chain of custody and their presentation Capability to correctly use the instruments and procedures of and to evaluate, argue and make decisions on specific case studies Capability to build own arguments/to defend own ideas and to evaluate own and others' arguments 	ty of the reports tions 40%							
10.6 Minimal performance	10.6 Minimal performance standard								
 Student will be able to certification is defined Students will be able to certification. 	correctly describe and argument the way forest management a and organised; o correctly describe and practical aspects of forest management	nd chain of custody t and chain of custody							

The condition to pass the exam is to get a minimum grade of 5 for both the written and oral exams/reports

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. Alexandru Lucian CURTU,

Prof. Alexandru Stelian BORZ

Dean

Head of Department

Prof. dr. eng. Ioan Vasile ABRUDAN

Assoc. prof. dr. eng. Aureliu Florin HALALISAN,

Course holder

Holder of seminar/ laboratory/ project

- 1) Field of study select one of the following options: Bachelor / Master / Doctorate(to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorate;

- ³⁾ Course status (content) for the Bachelor level, select one of the following options:FC (fundamental course) / DC (course in the study domain) / SC (specialtycourse) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC(advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC(non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transylvania University of Brașov
1.2 Faculty	Faculty of Silviculture and Forestry Engineering
1.3 Department	Forest Engineering, Forest Management Planning and
	Terrestrial Measurements
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Multipurpose Forestry

2. Data about the course

2.1 Name of course Strategy and				ategy and Marketing o	f Fore	est Products		
2.2 Course convenor			Pro	Professor Bogdan POPA				
2.3 Seminar/ laboratory/ project			Pro	fessor Bogdan POPA				
convenor								
2.4 Study year	Ш	2.5 Semester	Ш	2.6 Evaluation type	E	2.7 Course	Content ³⁾	AC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	Out of whicl	n: 3.2 lecture	1	3.3 seminar/ laboratory/ project	1
3.4 Total number of hours in	28	Out of whicl	n: 3.5 lecture	14	3.6 seminar/ laboratory/ project	14
the curriculum						
Time allocation						Hours
Study of textbooks, course support, bibliography and notes						27
Additional documentation in libraries, specialized electronic platforms, and field research						32
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays						26
Tutorial						3
Examinations						4
Other activities						
3.7 Total number of hours of student activity 92						

3.7 Total number of hours of student activity	92
3.8 Total number per semester	120
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 curriculum-related	-
4.2 competences-related	-

5. Conditions (if applicable)

5.1 for course development	-
5.2 for seminar/ laboratory/	-
project development	

6. Specific competences
	CP.1: Understanding the specifics of marketing within the forestry sector.
	• LO 1.1: The graduate understands Business-to-Business marketing principles specific to forestry.
	• LO 1.2: The graduate demonstrates the ability to design marketing strategies that comply with
	governance and policy requirements.
	• LO 1.3: The graduate evaluates forest products and services markets, including intangible ecosystem
es	services.
enc	Relevance:
ıpet	The course provides students with tools and knowledge to analyze forest products markets, develop
соп	strategies, and comply with sectoral policies.
nal	
ssio	CP.4: Application of strategic approaches in forest products marketing.
ofe	• LO 4.1: The graduate designs and develops innovative marketing strategies for forest products.
Ъ	• LO 4.2: The graduate demonstrates the ability to link forestry policies and strategies to practical
	marketing and business operations.
	Relevance:
	Seminars focus on case studies and business plan development, fostering applied knowledge for market
	segmentation, product positioning, and strategy formulation.
	CT.1: Collaborative and ethical professional behavior in marketing contexts.
	• LO 1.4: The graduate demonstrates teamwork abilities in developing marketing strategies and solving
	forestry-related challenges.
S	• LO 1.5: The graduate integrates ethical principles into decision-making processes in forestry
nce	marketing.
eter	
e	Relevance:
ompe	Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing
al compe	Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing practices.
ersal compe	Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing practices. CT.3: Entrepreneurial thinking and adaptability to market dynamics.
nsversal compe	 Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing practices. CT.3: Entrepreneurial thinking and adaptability to market dynamics. LO 3.1: The graduate develops business ideas based on forest products and demonstrates enterprise
Transversal compe	 Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing practices. CT.3: Entrepreneurial thinking and adaptability to market dynamics. LO 3.1: The graduate develops business ideas based on forest products and demonstrates enterprise skills in forestry marketing.
Transversal compe	 Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing practices. CT.3: Entrepreneurial thinking and adaptability to market dynamics. LO 3.1: The graduate develops business ideas based on forest products and demonstrates enterprise skills in forestry marketing. Relevance:
Transversal compe	 Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing practices. CT.3: Entrepreneurial thinking and adaptability to market dynamics. LO 3.1: The graduate develops business ideas based on forest products and demonstrates enterprise skills in forestry marketing. Relevance: Students engage in activities like developing start-up business ideas and preparing short business plans,
Transversal compe	 Relevance: Seminars involve group discussions and case study analysis, emphasizing collaboration and ethical marketing practices. CT.3: Entrepreneurial thinking and adaptability to market dynamics. LO 3.1: The graduate develops business ideas based on forest products and demonstrates enterprise skills in forestry marketing. Relevance: Students engage in activities like developing start-up business ideas and preparing short business plans, encouraging entrepreneurial growth.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• To familiarize the students with the advanced knowledge and the state-of-
	art approaches used in the elaboration process for the specific strategy of
	the forest products
7.2 Specific objectives	• To provide students with the knowledge of value addition and utilisation of
	different forest produce
	• To provide students with the basic understanding of market operations for
	forestry products
	• To develop the personal and interpersonal skills related to engineering,
	research and social dimensions

8. Content

8.1 Course	Teaching methods	Number of	Remarks
		hours	

1. Concepts and theories of markets and	In depth lecture given by the	2	
marketing. Forest products in the forest specific	convenor based on Power Point		
supply chain	Presentation		
2. Markets for forest products/services	-	4	
3. Markets for intangible forest products/services		2	
4. Markets for forest products and policy		2	
instruments			
5. Strategic marketing – strategies for forest		4	
products marketing			
Bibliography			
 Abrudan, I.V. (2007). Cross-sectoral Linkag sectoral Policy Developments in Forestry. United Kingdom, ISBN 12: 978-186592-250 	es between Forestry and other Sectors ir (Editors: Dube, Y. si Schmithusen, F.), FAC 02 pg, 182, 189:	n Romania. In:) and CAB Inter	<i>Cross-</i> national,
2 Anderson (1994) Dublic policy making (2 <i>th ad</i> Drincotown, NI: Houghton Mifflin		
2. Anderson, J. (1994). Fublic policy making (2	u/Z th ad L Engelwood Cliffs NI Propriet	. U-11	
5. Dye, 1. (1992). Understanding Public Policy	y (<i>y - u) eu. y</i> . Engelwood Chirs, NJ: Prenice	z nall. Zaaland lauwaa	l of Coucotury
4. Haliseli E., Jusili H., 2005. Marketing of Fo	rest Products in a changing world. New a	Zeeland Journa	for Forestry
5 Kotler D. Amstrong G. 1991 Principles of	Marketing Protince Hall		
6 Krott M (2005): Forest policy analysis So	ringer Verlag, Germany, ISBN 978-1-402	0_3/.78_7 373	'n
7 Maysar B. Suominen S.R. Weiss G. Rame	tsteiner F 2007 Study on the Developm	ent of Marketi	ry ng of Non-
Market Forest Products and Services DG /	AGRI Bruxeless		16 01 11011
8. Sinclair, S.A., 1992, Forest products marke	ting. McGraw-Hill.		
9. UNECE, 2016. Forest Products – Annual M	larket review. United Nations Publication	S.	
10. MA. 2005. Ecosystems and human well-be	eing. Synthesis. Millennium Ecosystem A	ssessment Isla	nd Press,
Washington. DC			
11. http://epp.eurostat.ec.europa.eu/			
12. http://www.fao.org/			
13. http://www.unece.org/			
8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of	Remarks
		hours	
1. Segmenting/targeting/positioning in forest	Discussions chaired by teacher	2	
products markets			
2. Payments for ecosystem services. Best	Discussions chaired by teacher	2	
2. Payments for ecosystem services. Best practice examples	Discussions chaired by teacher	2	
2. Payments for ecosystem services. Best practice examples3. Developing start-up business idea involving	Discussions chaired by teacher Case study analysis & elaboration of	2 3	
2. Payments for ecosystem services. Best practice examples3. Developing start-up business idea involving forest products	Discussions chaired by teacher Case study analysis & elaboration of short business plan and	2 3	
 Payments for ecosystem services. Best practice examples Developing start-up business idea involving forest products 	Discussions chaired by teacher Case study analysis & elaboration of short business plan and presentations by students	2	
 2. Payments for ecosystem services. Best practice examples 3. Developing start-up business idea involving forest products 4. Linkage between the forestry policy and 	Discussions chaired by teacher Case study analysis & elaboration of short business plan and presentations by students Discussions chaired by teacher	2 3 3	
 2. Payments for ecosystem services. Best practice examples 3. Developing start-up business idea involving forest products 4. Linkage between the forestry policy and strategy and the strategy of the forest products 	Discussions chaired by teacher Case study analysis & elaboration of short business plan and presentations by students Discussions chaired by teacher	2 3 3	
 2. Payments for ecosystem services. Best practice examples 3. Developing start-up business idea involving forest products 4. Linkage between the forestry policy and strategy and the strategy of the forest products 5. The specific items that appear in the 	Discussions chaired by teacher Case study analysis & elaboration of short business plan and presentations by students Discussions chaired by teacher Discussions chaired by teacher	2 3 3 2	
 2. Payments for ecosystem services. Best practice examples 3. Developing start-up business idea involving forest products 4. Linkage between the forestry policy and strategy and the strategy of the forest products 5. The specific items that appear in the elaboration process of the public policy 	Discussions chaired by teacher Case study analysis & elaboration of short business plan and presentations by students Discussions chaired by teacher Discussions chaired by teacher	2 3 3 2	
 2. Payments for ecosystem services. Best practice examples 3. Developing start-up business idea involving forest products 4. Linkage between the forestry policy and strategy and the strategy of the forest products 5. The specific items that appear in the elaboration process of the public policy 6. Cross-sectorial links of Forestry 	Discussions chaired by teacher Case study analysis & elaboration of short business plan and presentations by students Discussions chaired by teacher Discussions chaired by teacher Discussions chaired by teacher	2 3 3 2 2	

- Abrudan, I.V. (2007). Cross-sectoral Linkages between Forestry and other Sectors in Romania. In: *Cross-sectoral Policy Developments in Forestry*. (Editors: Dube, Y. si Schmithusen, F.), FAO and CAB International, United Kingdom, ISBN 13: 978 184593 2503 pg. 183-189;
- 2. Anderson, J. (1994). *Public policy making (2th ed.).* Princetown, NJ: Houghton Mifflin.
- 3. Dye, T. (1992). Understanding Public Policy (7-th ed.). Engelwood Cliffs, NJ: Prentice Hall.

- 4. Kotler P., Amstrong G., 1991. Principles of Marketing. Pretince Hall.
- 5. MA. 2005. Ecosystems and human well-being. Synthesis. Millennium Ecosystem Assessment Island Press, Washington. DC
- 6. TEEB The Economics of Ecosystems and Biodiversity 2010. Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB. Progress Press, Malta, 36 pp.
- 7. Popa B., Borz S.A. (2013) *Mecanisme de plăți pentru serviciile ecosistemelor din România*, Editura Lux Libris, Brașov.
- 8. Popa B., Bann C. (2012). *An assessment of the contribution of ecosystems in protected areas to sector growth and human wellbeing in Romania*, United Nations Development Programme, Bucharest, 122p.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Today students will be part of the transition to bioeconomy during their working career. Properly educated they can speed up this transition

10. Evaluation

			_
Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Capacity to use the	Written exam	50%
	accumulated knowledge in		
	elaborating an essay on an		
	imposed topic, during the		
	exam		
10.5 Seminar/ laboratory/	Student participation and		10%
project	involvement in the		
	discussions during the		
	seminars		
	Portfolio of case studies and	Portfolio analysis	40%
	essays on topics discussed		
	during the seminars		
10.6 Minimal performance standa	rd		

• Students should be able to understand and use the marketing concepts and approaches in general and in forestry context.

 Minimum ability to write essays on pre-determined forest products marketing topics and defend them in students' debates,

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Professor, Eng., PhD Lucian Alexandru CURTU Professor, Eng., PhD Stelian Alexandru BORZ

Dean Professor, Eng., PhD Bogdan POPA Head of Department Professor, Eng., PhD Bogdan POPA

Course holders

Holder of seminar/ laboratory/ project

COURSE OUTLINE

1. Data about the study programme

1.1 Higher	Transylvania University of Braşov
education institution	
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Silviculture
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Multiple Purpose Forestry

2. Data about the course

2.1 Name of course			Sil	viculture and Yield o	of Fo	orest Ecosystei	ms (SYFE)	
2.2 Course convenor			Pro	f. dr. M.Sc. Valeriu-Nor	rocel	Nicolescu		
2.3 Seminar/ laboratory/ project			Pro	Prof. dr. M.Sc. Valeriu-Norocel Nicolescu				
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	E	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	CPC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of whic	h: 3.2 lectur	e	1	3.3 seminar/ laboratory/ project	1
3.4 Total number of hours in	3.4 Total number of hours in 28 out of which: 3.5 lecture 14 3.6 seminar/ laboratory/		3.6 seminar/ laboratory/ project	14			
the curriculum	e curriculum						
Time allocation							hours
Study of textbooks, course support, bibliography and notes				26			
Additional documentation in libraries, specialized electronic platforms, and field research				20			
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays			33				
Tutorial			3				
Examinations				10			
Other activities			0				
3.7 Total number of individual st	udy ho	urs	92				

5.7 TOLAL HUITIDEL OF ITUIVIUUAL SLUUY HOUTS	92
3.8 Total number per semester	120
3.9 Number of credits ⁵⁾	4

4. Prerequisites (if applicable)

4.1 curriculum-related	-
4.2 competences-related	-

5. Conditions (if applicable)

5.1 for course development	The attendance of lectures is not compulsory.
5.2 for seminar/ laboratory/	Laboratory attendance is compulsory.
project development	• Deadlines of all kinds will be jointly decided upon by the teacher and students.

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems
	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and
	technologies applied and anticipated in forest ecosystem management and forest production systems.
	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies
	related to forest ecosystem management and forest production systems.
	Relevance to SYFE:
	This competence aligns with the course's focus on stand dynamics, yield modeling, and silvicultural interventions,
	emphasizing the practical application of theoretical knowledge to real-world forestry challenges.
	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and
	strategic systems
	• LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and
es	technologies applied and anticipated in economic, regulatory, political, and strategic systems in the
enc	forestry sector.
pet	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies
COT	related to economic, regulatory, political, and strategic systems in the forestry sector.
nal	Relevance to SYFE:
ssio	This competence connects to discussions on stand density control, species composition, and yield optimization,
ofe	requiring an understanding of broader policy and regulatory contexts impacting silviculture and yield.
Ъ.	
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and
	macro-social and institutional levels in the forestry sector
	• LO 1.1: The graduate objectively evaluates the responsibilities and capacities of team members or
	collaborators.
	• LO 1.2: The graduate organizes activities based on employee qualifications, task complexity, and agreed
	time and performance norms.
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and
	with external partners.
	Relevance to SYFE:
	The course involves fieldwork and collaborative analysis , enhancing students' ability to organize and
	communicate within a team and with external stakeholders in forestry operations.
	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the
	dynamics of the field and labor market demands
S	• LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
nce	• LO 3.2: The graduate identifies opportunities for continuous professional development.
oete	• LO 3.3: The graduate self-evaluates and plans realistic career development goals, identifying strategies
Jmc	to overcome professional challenges.
al c	Relevance to SYFE:
/ers	This competence supports the course's goal of developing advanced skills and lifelong learning habits,
ansv	encouraging students to stay informed about emerging silvicultural and yield methodologies.
Tri	

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• To familiarize the students with the advanced knowledge and the state-of
	art approaches used in the fields of Silviculture and Yield.
7.2 Specific objectives	• To define and use the concepts, methods, tools and approaches specific t
	the fields of Silviculture and Yield.
	• To develop the personal and inter-personal skills related to engineering

8. Content

8.1 Course	Teaching methods	Number of	Remarks
		hours	
1. Forest (stand) dynamics, growth and yield: state-of-	Lecture	1	
the-art and perspectives			
2. Primary production, growth and harvestable yield:	Lecture	1	
specific terminology and links			
3. Stand structures: description and analysis	Lecture	1	
4. Growing space and competitive situation of	Lecture	1	
individual trees			
5. Growth relationships and their biometric	Lecture	2	
formulation			
6. Stand structure and yield: even-aged vs. uneven-	Lecture	2	
aged (all-aged) stands			
7. Stand density control and yield: role of planting	Lecture	4	
schemes, thinning (<i>stand silviculture</i> vs <i>crop tree</i>			
silviculture), and silvicultural systems			
8. Species composition and yield: pure vs. mixed	Lecture	2	
stands			

Bibliography

Ciubotaru, A., Păun, M., 2014: *Structura arboretelor.* Editura Universității Transilvania din Brașov, Brașov.

Giurgiu, V., 1979: Dendrometrie și auxologie forestieră. Editura Ceres, București.

Long, J.N., Vacchiano, G., 2014: *A comprehensive framework of forest stand property – density relationships: perspectives for plant population ecology and forest management.* Annals of Forest Science 71 (3), pp. 325-335.

Nicolescu, N.V., 2001: *Expresii alometrice ale eliminării naturale – între acceptare și negare*. Lucrările sesiunii de comunicări știin ifice "Pădurea românească la cumpăna mileniilor", 16 octombrie 2000, Facultatea de Silvicultură și Exploatări Forestiere, Universitatea "Transilvania" Brașov, pp. 111-116.

Nicolescu, V.N., 2016: *Silvicultură I. Biologia pădurii*. Editura *Aldus*, Brașov.

Nicolescu, V.N., 2016: Silvicultură II. Silvotehnică. Editura Aldus, Brașov.

Pretzsch, H., 2009: *Forest Dynamics, Growth, and Yield: From Measurement to Model.* Springer-Verlag, Berlin-Heidelberg.

Pretzsch, H., Biber, P., 2005: *A Re-Evaluation of Reineke's Rule and Stand Density Index*. Forest Science 51(4):304-320.

8.2 Laboratory	Teaching-learning methods	Number of	Remarks
		hours	
1. Stand structure: description and analysis	Fieldwork (stands managed	2 hours	
	by Kronstadt F.D.)		
2. Planting schemes and yield	Lab work/case studies	2 hours	
3. Relationship between silvicultural interventions	Fieldwork (forests	10 hours	
(cleaning-respacing and thinning), growth and yield in	managed by Kronstadt F.D.		
(a) European-beech, (b) Norway spruce and (c) silver	and Cristian F.D.)		
fir-dominated stands			

Bibliography

Faure, G., Pătrăucean, A., Nicolescu, V.N., 2016: *Un exemple de la sylviculture de l'Epicea commun entre deux extrêmes.* Revista pădurilor 5-6, pp. 5-22.

Nicolescu, V.N., 2016: *Silvicultură I. Biologia pădurii*. Editura *Aldus*, Brașov. Nicolescu, V.N., 2016: *Silvicultură II. Silvotehnică*. Editura *Aldus*, Brașov. Nicolescu, N.V., Petri an, I.C., Stăncioiu, T.P., Vasilescu, M.M., 2004: *Aplicarea cură irilor în făgete din zona Brașov.* Revista pădurilor, edi ia specială 1, pp. 31-37.

Pătrăucean, A., <u>Nicolescu, V.N.</u>, 2011: *Early silviculture of Norway spruce (Picea abies (L.) Karst) plantations, between economics and stability: a case-study*. Spanish Journal of Rural Development II (2): 23-32.

Pretzsch, H., 2009: *Forest Dynamics, Growth, and Yield: From Measurement to Model.* Springer-Verlag, Berlin-Heidelberg.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations and potential employers.

Furthermore, the course contents are in-line with the national qualification system and the European qualification framework being produced through a participatory approach including curricula discussions with Romanian and European experts in the field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage of			
		methods	the final grade			
10.4 Course	• Knowledge of specific terminology of	Exam	70%			
	Silviculture and Yield	_				
	• Capability to properly use the concepts					
	and terminology of Silviculture and Yield					
	• Capability to analyze and interpret					
	relevant case-studies in Silviculture and					
	Yield					
	• Capability to evaluate, argue and make					
	decisions on complex case-studies					
10.5 Seminar/ laboratory/	• Development of own knowledge on the	Portfolio	30%			
project	course and laboratory contents					
	• Capability to correctly use the tools and					
	procedures of Silviculture and Yield					
	• Capability to build own arguments and to					
	defend own ideas					
	• Capability to evaluate own and others'					
	arguments					
10.6 Minimal performance s	10.6 Minimal performance standard					
• Students will be able to correctly describe and argument the importance of Silviculture and Yield in forestry and						
forest ecosystem management.						
• Students will be able to select the most appropriate silvicultural tools/operations to be used for a certain						
management/yield target.						

This course outline was certified in the Department Board meeting on 29.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof.dr.eng. Alexandru-Lucian CURTU	Prof.dr.eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof.dr.M.Sc.eng. Valeriu-Norocel NICOLESCU	Prof.dr.M.Sc.eng. Valeriu-Norocel NICOLESCU
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial
	Measurements
1.4 Field of study	Forestry
1.5 Study level	Master
1.6 Study programme/Qualification	Multiple Purpose Forestry / Master in Forest Sciences

2. Data about the course

2.1 Name of cour	se		Research Activity					
2.2 Course convenor			Prof. dr. eng. Mihai Daniel Niță					
2.3 Laboratory			Prof. dr. eng. Mihai Daniel Niță					
2.4 Study year	Ш	2.5 Semester	П	2.6 Evaluation type	Е	2.7 Course	Content	AC
						status	Attendance type	CPC

3. Total estimated time

3.1 Number of hours per week	11	out of whic	:h: 3.2 le	cture		3.3 project		11
3.4 Total number of hours in	154	out of whic	:h: 3.5 le	cture		3.6 project		154
the curriculum								
Time allocation						hours		
Study of textbooks, course support, bibliography and notes					16			
Additional documentation in libraries, specialized electronic platforms, and field research					360			
Preparation of research reports					50			
Tutorial					10			
Examinations					10			
3.7 Total number of hours of student activity 446								
3.8 Total number per semester								
3.9 Number of credits								

4. Prerequisites

4.1 curriculum-related	• The student should be proficient in the theory of the discipline in which the
	research activity is carried out
4.2 competences-related	• The student should be familiarised with the research practice of the discipline in
	which the research activity is carried out

5. Conditions

5.1 for course development	•	
5.2 for project • Progress reports are to be provided and defended in due time as agree		
		supervising teacher

ompetences	 LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems. Relevance to Course: Students develop the ability to analyze and interpret research topics in forestry, applying appropriate methods and tools to solve complex problems and enhance their understanding of advanced forestry systems. 						
al co	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and						
sion	strategic systems						
Profes	• LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector.						
	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector.						
	Relevance to Course:						
	Students adopt argumentation-based evaluation strategies and apply their knowledge of forestry's economic and policy aspects to conduct impactful research and solve significant problems.						
	CT.2: Managing personal and interpersonal relationships specific to teamwork in forestry management and forestry research projects						
	• LO 2.1: The graduate applies ethical principles in professional activities.						
	• LO 2.2: The graduate promotes high standards of quality and professional integrity in the team/program managed.						
es	Relevance to Course:						
al competenc	The course encourages students to participate in collaborative research activities , fostering professional integrity and ethical practices when developing articles or projects.						
l ransvers.	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands						
	I A HIJ J THE GRAduate keeps undated with advances in techniques and recearch in their field of practice						

CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands

- LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice. ٠
- LO 3.2: The graduate identifies opportunities for continuous professional development. •

Relevance to Course:

Students are encouraged to continuously update their **knowledge and skills**, ensuring their **research remains** relevant and aligned with modern forestry challenges and opportunities.

7. Course objectives

7.1 General course objective

• To enhance the knowledge and skills needed in the forest science and

on nesearch activity	reaching methods	nemans		
1.Safety first: safety training in relation to the				
requirements set for the research topic				
2.Supervised research based on the student option on				
one of the disciplines included in the curriculum				
3.Preparation of research progress reports				
4.Defending research progress reports				
Bibliography				
Books, guidelines and scientific articles provided by the course convevor				

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The contents of the research activity have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations, and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included discussions with Romanian and European experts in the field.

10.	Eval	luation
		aacion

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.5 project	• Quality of the research		100%
	reports		
	• Other criteria as		
	established by the		
	supervisors		
10.6 Minimal performance standa	rd		
• Integration of the own knowled	dge and skills in research reports	s at an average level, proved by th	e layout, structure,
correctness, relevance and inno	ovation brought by the research	reports.	

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. dr. eng. Alexandru Lucian CURTU	Prof. dr. eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof. dr. eng. Mihai Daniel NITA	Prof. dr. eng. Mihai Daniel NITA

(course in the study domain)/ SC (specialty course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC(advanced course);

- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC(non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25study hours (teaching activities and individual study).

1.1 Higher education institution	Transilvania University of Brasov	
1.2 Faculty	Faculty of Silviculture and Forest Engineering	
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial	
	Measurements	
1.4Field of study	Forestry	
1.5Study level	Master	
1.6 Study programme/Qualification	Multiple Purpose Forestry / Master in Forest Sciences	

2. Data about the course

2.1 Name of cour	se		Elaboration of the MSc Th		f the MSc Thesis			
2.2 Course conve	convenor Prof. dr. eng. Mihai Daniel Niță							
2.3 Laboratory			Prof. dr. eng. Mihai Daniel		Niță			
2.4 Study year	П	2.5 Semester	II 2.6 Evaluation type		Е	2.7 Course	Content	AC
						status	Attendance type	CPC

3. Total estimated time

3.1 Number of hours per week	4	out of whic	h: 3.2 lecture	e	3.3 project		4
3.4 Total number of hours in	56	out of whic	h: 3.5 lecture	e	3.6 project		56
the curriculum							
Time allocation							hours
Study of textbooks, course support, bibliography and notes 20						20	
Additional documentation in libraries, specialized electronic platforms, and field research 9						94	
Writing the MSc thesis 1						120	
Tutorial 5						5	
Examinations 5						5	
3.7 Total number of hours of student activity 244							
3.8 Total number per semester			300				
3.9 Number of credits 10			10				

4. Prerequisites

4.1 curriculum-related	 The student should be proficient in the theory of the discipline in which the research activity is carried out The student should be proficient in the theory of academic ethics and academic writing
4.2 competences-related	 The student should be familiarised with the research reporting practice of the discipline in which the research activity is carried out The student should be proficient in computer use and practice of academic writing

5. Conditions

- LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in forest ecosystem management and forest production systems.
- **LO 1.2:** The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems.

Relevance to Course:

The MSc thesis development requires students to **understand advanced concepts and techniques** related to their specific research field in forestry and apply this knowledge to produce scientifically sound results.

CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and strategic systems

- LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector.
- LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector.

Relevance to Course:

Students need to integrate broader **regulatory and strategic considerations** into their research, ensuring the MSc thesis aligns with real-world challenges and sectoral policies.

CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector

• **LO 1.3:** The graduate employs effective communication strategies and techniques within the team and with external partners.

Relevance to Course:

Students must effectively **communicate their research findings** with their supervisor, colleagues, and the academic community, ensuring clarity and adherence to institutional standards.

CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands

- LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
- **LO 3.3:** The graduate self-evaluates and plans realistic career development goals, identifying strategies to overcome professional challenges.

Relevance to Course:

The process of writing the MSc thesis encourages students to **continuously improve their skills**, **update their knowledge**, and plan for future career growth through research excellence.

Transversal competences

Professional competences

8.1 Elaboration of the MSc thesis	Teaching methods	Remarks
1.Template: checking the requirements of the		
institution on how the MSc thesis should be		
developed		
2.Writing the MSc thesis		
2.1.Preparation and documentation of the results:		
artwork, tables, metadata, models, appendixes,		
databases and text to comment them		
2.2.Discussion of the results in the view of own		
hypotheses and in the view of the results reported by		
others		
2.3.Writing and documenting the materials and		
methods		
2.4.Writing the conclusions		
2.5.Writing the introduction		
2.6.Writing the abstract and providing keywords		
3.Proofing and editing the text according to the		
suggestions provided by the supervisor and		
institutional rules on a regular basis		
4.Similarity check and deposition of the document		
Bibliography		
Guidelines provided by the course conveyor		
Institutional template of the MSc thesis		

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The contents of the research activity have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations, and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included discussions with Romanian and European experts in the field.

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.5 Laboratory	• Quality of the MSc thesis		100%
	• Other criteria as		
	actabliched by the		

10. Evaluation

Prof. dr. eng. Alexandru Lucian CURTU	Prof. dr. eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof. dr. eng. Mihai Daniel NITA	Prof. dr. eng. Mihai Daniel NITA
Course holder	Holder of project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorate(to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorate;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (specialty course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC(advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC(non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

1.1 Higher education institution	Transilvania University of Brașov
1.2 Faculty	Faculty of Silviculture and Forestry Engineering
1.3 Department	Forest Management and Engineering
1.4 Field of study	Forestry
1.5 Study level	MA
1.6 Study programme/ Qualification	Multipurpose Forestry

2. Data about the course

2.1 Name of cour	se		Forest-based Bioeconomy					
2.2 Course conve	enor		Professor Bogdan POPA					
2.3 Seminar/ lab	orato	ry/ project	ect Professor Bogdan POPA					
convenor								
2.4 Study year	Ш	2.5 Semester	Ш	2.6 Evaluation type	E	2.7 Course	Content ³⁾	AC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of whic	h: 3.2 lecture	1	3.3 seminar/ laboratory/ project	2
3.4 Total number of hours in	42	out of whic	h: 3.5 lecture	14	3.6 seminar/ laboratory/ project	28
the curriculum						
Time allocation						
Study of textbooks, course supp	ort, bib	liography an	d notes			30
Additional documentation in libraries, specialized electronic platforms, and field research						30
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays						41
Tutorial						3
Examinations						4
Other activities						
3.7 Total number of hours of student activity 108						
3.8 Total number per semester			150			

3.9 Number of credits ⁵⁾	5

4. Prerequisites (if applicable)

4.1 curriculum-related	-
4.2 competences-related	-

5. Conditions (if applicable)

5.1 for course development	-
5.2 for seminar/ laboratory/	-
project development	

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems
	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and
	technologies applied and anticipated in forest ecosystem management and forest production
	systems.
	LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and
	technologies related to forest ecosystem management and forest production systems.
	Relevance to Course:
	The course discusses forest-based bioeconomy strategies, requiring students to understand and apply key
	concepts related to forest ecosystems and their technical applications in a bioeconomic context.
	CD 2: Analysis sharesterization evaluation and modeling of forest related economic regulatory political and
	cP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and
	1021 The graduate understands the concents theories principles methods techniques and
	LO 2. 1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and apticipated in economic regulatory, political, and strategies systems in the
S	forestry sector
nce	• 1022: The graduate applies/uses concepts theories principles methods techniques and
ete	technologies related to economic regulatory political and strategic systems in the forestry sector
duc	Relevance to Course
al	The course emphasizes the role of governance, policy, and strategies in forest-based bioeconomy, aligning
sion	with the need for students to analyze and evaluate economic, regulatory, and political systems in the forestry
ofes	sector.
Pro	
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and
	macro-social and institutional levels in the forestry sector
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and
	with external partners.
	Relevance to Course:
	The seminars and team assignments focus on collaborative efforts , requiring students to communicate and
	present findings effectively within their groups and to the academic audience.
	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to
10	the dynamics of the field and labor market demands
Saor	 LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
eter	 LO 3.3: The graduate self-evaluates and plans realistic career development goals, identifying
dmo	strategies to overcome professional challenges.
al co	Relevance to Course:
ersa	The course encourages students to adapt to the bioeconomv-driven evolution in forestry, enabling them to
nsv	integrate new research and techniques into their professional development plans.
Tra	

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• The aim of this course is to familiarize students to different facets of the		
	forest-based bioeconomy. These include the origins of the bioeconomy, the		
	national and international context, the different challenges in managing		
	forest resources and changing patterns of supply and demand in forestry in		
	the bioeconomic context.		
7.2 Specific objectives	• Review the basics of the Economics of the Forest Sector (e.g. specificity).		

• Explains the concepts and aspirations of bioeconomy as a new sustainable
way that the economy should be organized.
• Explain the particularities of the forest sector from the perspective of
bioeconomy.
• Transfer knowledge about the need and applicability of the Ecosystem
Services Approach.
• Explain the entrepreneurial challenge in forest-based bioeconomy.
• Determine students to better assess the policy and governance approach
needs in the context of bioeconomy.

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Course introduction. Why bioeconomy? Concepts		2	
in Bioeconomy, Green economy, Circular economy		Z	
2. Challenges and Opportunities in Forest based			
Bioeconomy. Forest sector outlook. FBB challenge.		2	
Whats and hows in FBB. Great potential for new		2	
products			
3. Cross-sectorial approach in Forest based			
Bioeconomy – European perspective. <i>Biomass</i>			
availability. Impact on biodiversity. Relation with		2	
climate change. The forest amenity values and		2	
bioeconomy. Competitiveness in Bioeconomy.	In depth lecture given by		
Social aspects. Recommendations.	the convenor based on		
4. Forest based Bioeconomy strategies and	Power Point Presentation		
policies. <i>Policy instruments – short review. Global</i>		2	
and EU outlook on Bioeconomy strategies.			
5. Forest based Bioeconomy – Business innovation			
and entrepreneurship. Sustainable business		7	
models' archetypes. Examples of business models		Z	
in FBB			
6. Forest Bioeconomy and Green Deal. What is the			
new EU perspective over the Forest based		2	
bioeconomy?			
7. Recapitulation. Preparing for the exam.		2	

Bibliography

- 1. EC 2012 Bioeconomy Strategy
- 2. EC 2018 Bioeconoly Strategy
- 3. Lauri Hetemäki, Bart Muys, Paavo Pelkonen and Davide Pettenella 2014. Forest Bioenergy in Europe: Reassessment Needed. ThinkForest Brief, European Forest Institute.
- 4. EFI 2017 Towards a sustainable European forest-based bioeconomy assessment and the way forward
- 5. EFI 2014 Future of European Forest Based Sector. Structural Changes Towards Bioeconomy
- 6. Hetemaki I., 2015. Future of European Forest Based Sector. Presentation at Bio-economy Symposium Vienna, April, 2015
- 7. Hetemaki I., European Forest-Based Bioeconomy. Presentation at CIAg: Une bioeconomie basee sur la forest et le bois?, Universite de Lorraine, Nancy, December 201
- 8. Hetemäki, L., Hanewinkel, M., Muys, B., Ollikainen, M., Palahí, M. and Trasobares, A. 2017. Leading the way to a European circular bioeconomy strategy. From Science to Policy 5. European Forest Institute.

BIOECONOMY Article · January 2017						
10. 2017, EFI, Leading the way to a European circular bioeconomy strategy.						
11. Meyer R., 2017. Bioeconomy Strategies: Context, Visions, Guiding, Implementation Principles and						
Resulting debates. Sustainability9, 1031.						
12. Bracco S., Calicioglu O., Gomez San Juan M., Flammini A. 2018. Assessing the contribution of bioeconomy						
to the totoal economy: A review of natio	to the totoal economy: A review of national Frameworks. Sustainability, 10, 1698.					
13. Borras S., Edquist C., 2013. The choice o	of innovation policy instrumer	its. Technological Fore	ecasting and			
Social Change. 80 (8): 1513-1522		-	-			
14. Kemper, Melanie; Eike Dreblow; Matthia	as Duwe et. al. (2012): Suitabi	lity and Potential Inte	raction of Policy			
Instruments. Infographic.						
15. D Amato, D., Veijonaho, S., Toppinen, A.	2020. Towards sustainability	? Forest based circula	ir economy			
business models in Finish SMEs. Forest	Policy and Economics 110 (2	020) 101848.				
16. Bocken, NMP, Ritalia, P., Huotari, P. 201	7. The circular economy: expl	oring the introduction	of the concept			
among S&P 500 firms. Journal of Indust	rial Ecology. 21:487-490	-				
8.2 Seminar/ laboratory/ project	Teaching-learning		Remarks			
	methods	Number of hours				
1. Bioeconomy: Strengths, Weaknesses,	Discussions chaired by					
Opportunities and Threats	students	2				
2. Forest based Bioeconomy perspective outlook:	Team Assignments					
forest products; forest bioenergy; new products	guidance					
and forest based services; topic tor team		2				
assignment (1)						
3. Presentations of team assignments (1) and	Discussions chaired by					
discussions students 2						
4. Multiple choice individual assignment: <i>Still</i> Individual assignment						
<i>questions to be asked.</i>						
5. Presentations of individual assignments (2) and Discussions chaired by						
discussions students 2						
6. Presentations of individual assignments (2) and Discussions chaired by						
discussions	students	2				
7. Forest based Bioeconomy – Romanian	Discussions chaired by	2				
perspective	convenor	2				
8. Regional&country approach in Forest based	Team Assignments	2				
Bioeconomy	guidance	2				
9. Presentations of team assignments (3) and	Discussions chaired by	2				
discussions	students	Z				
10. Small business ideas/Forest based bioeconomy	Team Assignments	-				
innovations	guidance	Z				
11. Presentations of team assignments (4) and	Discussions chaired by	- -				
discussions	students	Z				
12. 2018 EU Bioeconomy strategy	Discussions chaired by	, ,				
	convenor	Z				
13. Bioeconomy in Forest Policy Discussions chaired by						
	convenor	۷				
14. Bioeconomy in Government and Governance	Discussions chaired by	ר ר				
convenor						
Bibliography						

9. Nina Drejerska Warsaw University Of Life Sciences: EMPLOYMENT IN VS. EDUCATION FOR THE

- 1. EC 2012 Bioeconomy Strategy
- 2. EC 2018 Bioeconoly Strategy
- 3. EFI 2017 Towards a sustainable European forest-based bioeconomy assessment and the way forward
- 4. EFI 2014 Future of European Forest Based Sector. Structural Changes Towards Bioeconomy
- 5. Meyer R., 2017. Bioeconomy Strategies: Context, Visions, Guiding, Implementation Principles and Resulting debates. Sustainability9, 1031.
- 6. World Bank. 2013. Forest sector rapid assessment, Climate Change and Low Carbon Green Growth Programme, Bucharest, World Bank office.
- 7. World Bank. 2011. Romania Functional Review, Environment, Water and Forestry, Volume 2: Forestry. World Bank, Washington DC

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Today students will be part of the transition to bioeconomy during their working career. Properly educated they can speed up this transition

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	Capacity to use the	Written exam	50%
	accumulated knowledge in		
	elaborating an essay on an		
	imposed topic, during the		
	exam		
10.5 Seminar/ laboratory/	Student participation and		10%
project	involvement in the		
	discussions during the		
	seminars		
	Portfolio of case studies and	Portfolio analysis	40%
	essays on topics discussed		
	during the seminars		
10.6 Minimal performance standa	rd	•	

10.6 Minimal performance standard

• Students should be able to understand and use the bioeconomy contexts and approaches in general and in forestry context.

• Minimum ability to write essays on pre-determined bioeconomy topics and defend them in students' debates.

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Professor, Eng., PhD Lucian Alexandru CURTU Professor, Eng., PhD Stelian Alexandru BORZ

Dean Professor, Eng., PhD Bogdan POPA

Head of Department Professor, Eng., PhD Bogdan POPA

Holder of seminar/ laboratory/ project

COURSE OUTLINE

1. Data about the study programme

,, 0	
1.1 Higher education institution	Transilvania University of Brașov
1.2 Faculty	Faculty of Silviculture and Forestry Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial Measurement
1.4 Field of study	Forestry
1.5 Study level	Master
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master in Forest Science

2. Data about the course

2.1 Name of cour	se		Management of Research Projects (MRP)					
2.2 Course convenor Professor Bogdan POPA								
2.3 Seminar/ laboratory/ project		Pro	Professor Bogdan POPA					
convenor								
2.4 Study year	Ш	2.5 Semester	Ш	2.6 Evaluation type	E	2.7 Course	Content ³⁾	AC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	3	out of which: 3.2	lecture	1	3.3 seminar/ laboratory/ project	2
3.4 Total number of hours in	42	out of which: 3.5	lecture	14	3.6 seminar/ laboratory/ project	28
the curriculum						
Time allocation h					hours	
Study of textbooks, course support, bibliography and notes 30					30	
Additional documentation in libraries, specialized electronic platforms, and field research 30				30		
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays 4				41		
Tutorial 3					3	
Examinations 4					4	
Other activities						
3.7 Total number of hours of student activity 108						
3.8 Total number per semester 150						

sie retarinamber per semester	150
3.9 Number of credits ⁵⁾	5

4. Prerequisites (if applicable)

4.1 curriculum-related	NA
4.2 competences-related	NA

5. Conditions (if applicable)

5.1 for course development	NA
5.2 for seminar/ laboratory/	NA
project development	

6. Specific competences

I		CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
		systems
es	LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies	
	enc	applied and anticipated in forest ecosystem management and forest production systems.
	Ipet	LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies
	соп	related to forest ecosystem management and forest production systems.
	nal	Revelance to the course:
	ssio	The course deliver information related to planning and performing research projects , requiring students to
	ofe:	understand and apply key concepts related to forest ecosystems and their technical applications in research
	Ъ	project context.
		CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and
		macro-social and institutional levels in the forestry sector
		LO 1.3: The graduate employs effective communication strategies and techniques within the team and with
	a_	ຍຼ່ external partners.
	vers	Relevance to Course:
I	ans	The seminars and team assignments focus on collaborative efforts , requiring students to communicate and
l	μ	9 present findings effectively within their groups and to the academic audience.

7. Course objectives (resulting from the specific competences to be acquired)

7.1 General course objective	• The aim of this course is to introduce the essential elements in managing			
	any type of research – at any stage of career.			
7.2 Specific objectives	Understand the essential principles of effective research project			
	management			
	• Identify the eight key skills every research project manager needs to develop			
	• Appreciate how successful research project management can benefit y			
	career – both inside and outside of academia			
	• Understand the four core stages of the research project lifecycle, so you'll be			
	better prepared to manage every research project and programme for			
	success			

8. Content

8.1 Course	Teaching methods	Number of hours	Remarks
1. Generalities about scientific research. Scientific	In depth lecture given by	2	
methods. The scientific research process. The steps	the convenor based on		
of the research project	Power Point Presentation		
2. Instruments of scientific research. Planning the	In depth lecture given by	2	
experiments. Experimental data analysis	the convenor based on		
	Power Point Presentation		
3. Formulation of research hypothesis: necessity,	In depth lecture given by	2	
transferability, objectives, hypothesis,	the convenor based on		
experimental strategy, research project	Power Point Presentation		
methodology			
4. Research project resources. Research project	In depth lecture given by	2	
budget	the convenor based on		
	Power Point Presentation		
5. Project management. Project evaluation plan	In depth lecture given by	2	
	the convenor based on		
	Power Point Presentation		

6. Project results dissemination. Technical reports.	In depth lecture given by	2	
documents for disseminating results of the	the convenor based on		
scientific research	Power Point Presentation		
7. Best practices: research projects in forestry	In depth lecture given by	2	
	the convenor based on		
	Power Point Presentation		

Bibliography

- Branch, R. M. (2009). SPICE: A competitive project management paradigm. *Competition Forum, 7*(1), 181-187.
- Dowling, M. A. & Turner, J. R. (2010). <u>Project management in academia: friend or foe? An exploratory study of the social sciences and humanities.</u> Paper presented at PMI[®] Research Conference: Defining the Future of Project Management, Washington, DC. Newtown Square, PA: Project Management Institute.
- Bennett, F. Lawrence. 1996. The management of engineering. New York: Wiley.
- Cleland, David. 1998. *Field guide to project management.* New York: Wiley.
- Cleland, D.I. and Kerzner, H. 1985. *A project management dictionary of terms*. New York: Van Nostrand Reinhold.
- FERNANDES Gabriela; 2021; Managing Collaborative R&D Projects: Leveraging Open Innovation Knowledge-Flows for Co-Creation; Springer Nature AG; Switzerland.

8.2 Seminar/ laboratory/ project	Teaching-learning	Number of hours	Remarks
	methods		
1. Bibliographic research	Discussions chaired by	4	
	students		
2. Planning the experiments and research.	Case studies	4	
Examples from forestry sector: case studies on real			
data			
3. Objectives of research projects. Case studies	Case studies	4	
4. Research project budget	Case studies	4	
5. Practical application: Elaboration of a research	Portfolio elaborated by	12	
application	students in teams		

Bibliography

- Branch, R. M. (2009). SPICE: A competitive project management paradigm. *Competition Forum, 7*(1), 181-187.
- Dowling, M. A. & Turner, J. R. (2010). <u>Project management in academia: friend or foe? An exploratory study of the social sciences and humanities.</u> Paper presented at PMI[®] Research Conference: Defining the Future of Project Management, Washington, DC. Newtown Square, PA: Project Management Institute.
- Bennett, F. Lawrence. 1996. *The management of engineering*. New York: Wiley.
- Cleland, David. 1998. *Field guide to project management.* New York: Wiley.
- Cleland, D.I. and Kerzner, H. 1985. *A project management dictionary of terms*. New York: Van Nostrand Reinhold.
- FERNANDES Gabriela; 2021; Managing Collaborative R&D Projects: Leveraging Open Innovation Knowledge-Flows for Co-Creation; Springer Nature AG; Switzerland.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

Today students will be able to fulfill the requirements of research and academia institutions but also the requirements of companies in research and development activity.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage	
			of the final grade	
10.4 Course	Capacity to use the	Written exam	50%	
	accumulated knowledge in			
	elaborating an essay on a			
	imposed topic, during the			
	exam			
10.5 Seminar/ laboratory/	Student participation and		10%	
project	involvement in the			
	discussions during the			
	seminars			
	Portfolio of case studies and	Portfolio analysis	40%	
	essays on topics discussed			
	during the seminars			
10.6 Minimal performance standard				
• Students should be able to understand and use the terminology and procedures that are specific to designing and				
managing a research project				

• Students should have the minimum ability to design the research project for their dissertation thesis specific research, and defend it in students debate.

This course outline was certified in the Department Board meeting on 27/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.eng. Alexandru Lucian CURTU	Prof.dr.eng. Stelian Alexandru BORZ

Dean Professor, Eng., PhD Bogdan POPA

.....

Head of Department Professor, Eng., PhD Bogdan POPA

Course holder

Holder of seminar/ laboratory/ project

.....

Note:

- 1) Field of study select one of the following options: BA/MA/PhD. (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: BA/MA/PhD;
- ³⁾ Course status (content) for the BA level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the MA level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);

⁵⁾ One credit is the equivalent of 25 – 30 study hours (teaching activities and individual study).

1. Data about the study	programme
-------------------------	-----------

1.1 Higher	Transylvania University of Braşov
education institution	
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Department of Silviculture
1.4 Field of study ¹⁾	Forestry
1.5 Study level ²⁾	MA
1.6 Study programme/ Qualification	Multiple Purpose Forestry / Master in Forestry

2. Data about the course

2.1 Name of course				Decision-Support Systems in Forest Ecosystem Management (SSFM)				
2.2 Course convenor			Prof.dr.M.Sc. Valeriu-Norocel Nicolescu					
2.3 Seminar/ laboratory/ project			Sef	Sef lucr.dr.ing. Mihai-Bogdan Fedorca				
convenor								
2.4 Study year	2	2.5 Semester	3	2.6 Evaluation type	E	2.7 Course	Content ³⁾	SC
						status	Attendance type ⁴⁾	EC

3. Total estimated time (hours of teaching activities per semester)

3.1 Number of hours per week	2	out of which	n: 3.2 lecture	1	3.3 seminar/ laboratory/ project	1
3.4 Total number of hours in	28	out of which	n: 3.5 lecture	14	3.6 seminar/ laboratory/ project	14
the curriculum						
Time allocation						hours
Study of textbooks, course supp	ort, bib	liography and	notes			44
Additional documentation in libraries, specialized electronic platforms, and field research						30
Preparation of seminars/ laboratories/ projects, homework, papers, portfolios, and essays						35
Tutorial						3
Examinations						10
Other activities					0	
3.7 Total number of individual study hours 122						

3.8 Total number per semester	150
3.9 Number of credits ⁵⁾	5

4. Prerequisites (if applicable)

4.1 curriculum-related	-
4.2 competences-related	-

5. Conditions (if applicable)

5.1 for course development	• The attendance of lectures is not compulsory.
5.2 for seminar/ laboratory/	Laboratory attendance is compulsory.
project development	• Deadlines of all kinds will be jointly decided upon by the teacher and students.

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems
	• LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and
	technologies applied and anticipated in forest ecosystem management and forest production systems.
	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies
	related to forest ecosystem management and forest production systems.
S	Relevance to Course:
ence	The course equips students with the ability to analyze forest ecosystems and their dynamics using decision-
pete	support tools and technical methods, critical for ecosystem-based management.
ofessional com	 CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and strategic systems LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the
с.	forestry sector.
	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic regulatory political and strategic systems in the forestry sector
	Relevance to Course:
	Students learn to utilize decision-support systems to incorporate regulatory, political, and strategic
	considerations in forest ecosystem management, addressing complex challenges effectively.
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners.
	Relevance to Course:
petences	Seminars and case studies encourage teamwork and communication skills, enabling students to collaborate and present solutions to complex problems in forestry management.
ersal com	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands
JSV6	• LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
Tra	• LO 3.3: The graduate self-evaluates and plans realistic career development goals, identifying strategies
	to overcome professional challenges.
	Relevance to Course:
	The course emphasizes staying updated with innovations in decision-support tools and their applications,
	preparing students to adapt and grow professionally in a rapidly evolving field.

7.1 General course objective	 To familiarize the students with the advanced knowledge and the state-of- art approaches used in the decision-support systems for forest ecosystem management.
7.2 Specific objectives	 To define and use the concepts, methods, tools and approaches specific to the decision-support systems for forest ecosystem management. To understand the context and importance of decision-support systems for forest ecosystem management. To develop the personal and inter-personal skills related to engineering, research and social dimensions.

7. Course objectives (resulting from the specific competences to be acquired)

8. Content			
8.1 Course	Teaching	Number of	Remarks
	methods	hours	
1. Decision: definition, types (classification), attributes	Lecture	1	
2. Decision-making process: definitions, steps, methods and	Lecture	2	
techniques, factors of influence and constraints, ethics			
3. Systems analysis tools relevant to silvicultural decision-making	Lecture	2	
and their use for: (i) modelling forest ecosystem issues (ecological			
processes, forest growth dynamics), (ii) analysing socio-economic			
issues (socio-economic modelling, economic evaluation) and (iii)			
developing and applying decision-support systems			
4. Decision-support systems and artificial intelligence (AI).	Lecture	2	
background/definition, history, goals (problems and sub-problems),			
components (sub-domains), tools, applications, ethical issues			
5. <i>Expert systems (ES)</i> : background/definition, relation AI/ES,	Lecture	4	
components (sub-systems), software architecture,			
advantaged/disadvantages of using ES, applications			
6. Use of silvicultural decision support systems/tools in forest	Lecture	3	
ecosystem management (regeneration, tending, silvicultural			
systems)			
Bibliography			

- Cunningham, K.K., Ezell, A.W., Belli, K.L., Hodges, J.D., 2004: *A decision-making model for managing or regenerating southern upland hardwoods*. In: Connor, K.F. (ed.) Proceedings of the 12th biennial southern silvicultural research conference. Gen. Tech. Rep. SRS–71. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. pp. 249-253.
- Dai, L., Zheng, B., Guofan, S., Zhou, L., 2006: *The roles of a decision support system in applying forest ecosystem management in Northeast China. Science in China: Series E Technological Sciences,* Vol. 49. Supp. I, pp. 9—18.
- De Montigny, L., Di Lucca, M., 2012: Using Decision-Support Tools to Make Science-Informed Intensive Silviculture Decisions. BC Forest Professional, September-October, pp. 15 și 26.
- Janowiak, M.K., Swanston, C.W., Nagel, L.M., Webster, C.R., Palik, B.J., Twery, M.J., Bradford, J.B., Parker, L.R., Hille, A.T., Johnson, S.M., 2011: *Silvicultural Decision-making in an Uncertain Climate Future: A Workshop-based Exploration of Considerations, Strategies, and Approaches.* Gen. Tech. Rep. NRS-81. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 14 p.
- Kleine, M., 1996: *Silvicultural Management of Broad-leaved and Chir Pine Forests in the Punakha and Wangdue - Phodrang Districts of Bhutan.* Final Report. Short-Term Consultancy to the Bhutan-German Integrated Forest Management Project. 50 p.
- Lexer, M., 2012: *The role of decision support tools in improving management strategies for ecosystem services in spruce forests.* Managing Forests for Ecosystem Services: Can spruce forests show the way? 8-11 October 2012 – Edinburgh, Scotland. 24 slide-uri.
- Lexer, M., 2013: *How to provide decision support to practitioners and policy makers. The ToolBox approach*. ThinkForest Brussels, 25 April 2013, 19 slide-uri.
- Lexer, M.J., Jäger, D., 2001: *A multi-attribute utility model to support silvicultural decision-making in secondary Norway spruce forests.* ISAHP 2001, Berne, Switzerland, August 2-4, 2001, pp. 263.

Nicolescu, V.N., 2016: Silvicultură II. Silvotehnică. Editura Aldus, Brașov, 289 p.

Pauwels, D., Lejeune, Ph., Rondeux, J., 2007: *A decision support system to simulate and compare silvicultural scenarios for pure even-aged larch stands.* Annals of Forest Science 64, pp. 345–353.

Pelletier, G., 2013: *The Development of Hardwood Silviculture Regimes Inspired by Financial Criteria.* Northern Hardwoods Research Institute, Orono, March 12, 2013.

Petrokofsky G., Hemery, G., Brown, N., 2008: *Knowledge feeds decision making: the people's say in UK forestry*. Quarterly Journal of Forestry 102: 221-225.

Pitt, D., 2001: *Aerial photography in silviculture decision making*. Frontline Express, Canadian Forest Service - Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, 2 p.

Smith, G.R., 1985: *Knowledge-Based Systems. Concepts, Techniques, Examples.* Presented at the Canadian High Technology Show. Lansdowne Park, Ottawa, ON, May 8, 1985, 84 p.

Somogyi, Z., 2009: *CASMOFOR: a decisionmaking tool for analysing projections of afforestations*. EU DG JRC, Ispra/Barza, 27 January 2009.

*** *Expert systems* (https://en.wikipedia.org/wiki/Expert_system – accessed 9 March 2016)

*** *Artificial intelligence* (https://en.wikipedia.org/wiki/Artificial_intelligence – accessed 9 March 2016)

8.2 Seminar/ laboratory/ project	Teaching-learning methods	Number of hours	Remarks
1. Decision-making process: case-studies in forest	Case-studies	3	
resource management			
2. Artificial intelligence: applications	Case studies/applications	3	
3. Use of decision-support tools - growth and yield	Case-studies	2	
models - in silvicultural decision making			
3. Use of decision-support tools - stand dynamics -	Case-studies	2	
in silvicultural decision making			
3. Use of decision-support tools - ecological	Case-studies	2	
principles - in silvicultural decision making			
3. Use of decision-support tools - economic issues	Case-studies	2	
- in silvicultural decision making			

Bibliography

- Cunningham, K.K., Ezell, A.W., Belli, K.L., Hodges, J.D., 2004: A decision-making model for managing or regenerating southern upland hardwoods. In: Connor, K.F. (ed.) Proceedings of the 12th biennial southern silvicultural research conference. Gen. Tech. Rep. SRS–71. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. pp. 249-253.
- De Montigny, L., Di Lucca, M., 2012: *Using Decision-Support Tools to Make Science-Informed Intensive Silviculture Decisions.* BC Forest Professional, September-October, pp. 15 și 26.
- Janowiak, M.K., Swanston, C.W., Nagel, L.M., Webster, C.R., Palik, B.J., Twery, M.J., Bradford, J.B., Parker, L.R., Hille, A.T., Johnson, S.M., 2011: *Silvicultural Decision-making in an Uncertain Climate Future: A Workshop-based Exploration of Considerations, Strategies, and Approaches.* Gen. Tech. Rep. NRS-81. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 14 p.
- Kleine, M., 1996: *Silvicultural Management of Broad-leaved and Chir Pine Forests in the Punakha and Wangdue - Phodrang Districts of Bhutan*. Final Report. Short-Term Consultancy to the Bhutan-German Integrated Forest Management Project. 50 p.
- Lexer, M., 2012: *The role of decision support tools in improving management strategies for ecosystem services in spruce forests.* Managing Forests for Ecosystem Services: Can spruce forests show the way? 8-11 October 2012 Edinburgh, Scotland. 24 slide-uri.

Lexer, M., 2013: *How to provide decision support to practitioners and policy makers. The ToolBox approach*. ThinkForest Brussels, 25 April 2013, 19 slide-uri.

Lexer, M.J., Jäger, D., 2001: A multi-attribute utility model to support silvicultural decision-making

in secondary Norway spruce forests. ISAHP 2001, Berne, Switzerland, August 2-4, 2001, pp. 263.

Nicolescu, V.N., 2014, 2015: *Silvicultură II. Silvotehnică*. Editura *Aldus*, Brașov, 289 p.

- Pauwels, D., Lejeune, Ph., Rondeux, J., 2007: *A decision support system to simulate and compare silvicultural scenarios for pure even-aged larch stands*. Annals of Forest Science 64, pp. 345–353.
- Pelletier, G., 2013: *The Development of Hardwood Silviculture Regimes Inspired by Financial Criteria*. Northern Hardwoods Research Institute, Orono, March 12, 2013.
- Petrokofsky G., Hemery, G., Brown, N., 2008: *Knowledge feeds decision making: the people's say in UK forestry*. Quarterly Journal of Forestry 102: 221-225.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers in the field of study)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian members of epistemic communities, professional associations and potential employers.

Furthermore, the course contents are in-line with the national qualification system and the European qualification framework being produced through a participatory approach including curricula discussions with Romanian and European experts in the field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percentage				
		methods	of the final grade				
10.4 Course	Knowledge of specific terminology of						
	decision-support systems						
	Capability to properly use the concepts and						
	terminology of decision-support systems						
	Capability to analyze and interpret relevant						
	case-studies in decision-support systems	Exam	70%				
	• Capability to evaluate, argue and make						
	decisions on complex case-studies						
10.5 Seminar/	Development of own knowledge on the						
laboratory/ project	course and laboratory contents						
	• Capability to correctly use the tools and						
	procedures of decision-support systems	Portfolio	30%				
	Capability to build own arguments and to						
	defend own ideas						
	• Capability to evaluate own and others'						
	arguments						
10.6 Minimal performanc	10.6 Minimal performance standard						

• Students will be able to correctly describe and argument the effectiveness of decision-support systems in forest ecosystem management.

• Students will be able to select the appropriate decision-support tools to be used for a given situation from a limited number of options.

This course outline was certified in the Department Board meeting on 29/09/2024 and approved in the Faculty Board meeting on 30/09/2024.

Prof.dr.eng. Alexandru-Lucian CURTU	Prof.dr.eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof.dr.M.Sc.eng. Valeriu-Norocel NICOLESCU	Lecturer dr. Mihai-Bogdan FEDORCA
Course holder	
	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorat (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorat;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain)/ SC (speciality course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

·· •	
1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial
	Measurements
1.4 Field of study	Forestry
1.5 Study level	MA
1.6 Study programme/Qualification	Multiple Purpose Forestry / Master in Forest Sciences

2. Data about the course

2.1 Name of course		Energy Procurement from Woody Biomass						
2.2 Course convenor		Pro	Prof. dr. eng. Valeriu Norocel Nicolescu					
		Pro	Prof. dr. eng. Stelian Alexandru Borz					
			Asis	Asist. prof. dr. eng. Cezar Scriba				
2.3 Laboratory		Prof. dr. eng. Valeriu Norocel Nicolescu						
		Pro	Prof. dr. eng. Stelian Alexandru Borz					
		Asist. prof. dr. eng. Cezar Scriba						
2.4 Study year	П	2.5 Semester	III	2.6 Evaluation type	Е	2.7 Course	Content	SC
						status	Attendance type	EC

3. Total estimated time

3.1 Number of hours per week	1	out of which:	3.2 lecture	1	3.3 laboratory	2
3.4 Total number of hours in	28	out of which:	3.5 lecture	14	3.6 laboratory	14
the curriculum						
Time allocation						hours
Study of textbooks, course support, bibliography and notes					25	
Additional documentation in libraries, specialized electronic platforms, and field research					25	
Preparation of portfolios, and essays					64	
Tutorial					4	
Examinations					4	
3.7 Total number of hours of student activity 122						
3.8 Total number per semester 150						

4. Prerequisites

3.9 Number of credits

4.1 curriculum-related	The attendees will have basic knowledge of Silviculture and Forest Engineering
4.2 competences-related	The attendees will have basic knowledge of computer use

5

5. Conditions

5.1 for course development	Course attendance is facultative
5.2 for laboratory	Laboratory attendance is compulsory

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production systems
	 LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in forest ecosystem management and forest production systems.
	 LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems. Relevance to Course:
competences	Students learn to analyze forest resources, including the potential of wood for energy production, apply silvicultural methods to establish and manage forests for energy, as well as the technologies and logistics used to procure wood for energy.
essional	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and strategic systems
Profe	• LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector.
	LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector. Relevance to Course:
	The course emphasizes the design of energy wood supply chains and the evaluation of their economic and environmental impacts, aligning with bioeconomy and regulatory frameworks.
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners.
ces	Relevance to Course:
competer	Laboratory tasks require collaboration, effective communication, and presentations, promoting teamwork and stakeholder engagement in forest operations.
ısversalı	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands
Tra	 LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice. LO 3.2: The graduate identifies opportunities for continuous professional development. Relevance to Course:
	The course encourages staying informed about advancements in technologies used to convert biomass to energy, supply chain innovations, and environmental performance, promoting lifelong learning.

7. Course objectives

7.1 General course objective	• To familiarize the attendees with the advanced knowledge and the state-of-
	art approaches used in the silviculture and utilization of wood for energetic
	purposes.
7.2 Specific objectives	• To define, elaborate (deepen) and use the concepts, methods, instruments

	i	and approaches in the silviculture and utilization of wood for energetic
	I	purposes;
	•	To understand the context of silviculture and utilization of wood for
		energetic purposes as part of larger systems;
	• .	To develop the personal and interpersonal skills related to engineering,
	I	research and social dimensions.

8. Content

8.1 Course	Teaching methods	Number of hours
First part:	Lecture	1 hour
Introduction to class, first part		
1.Resources of energy wood		
1.1. Availability of energy wood		
1.1.1. Wood originating from traditional silviculture		
1.1.2. Wood originating from urban forestry		
1.1.3. Wood originating from short and very short		
rotation coppices (SRCs)		
2.Traditional silviculture for energy wood production	Lecture	2 hours
2.1. High forest silviculture		
2.2. Coppice silviculture		
3.Silviculture of SRCs	Lecture	2 hours
3.1. Willows and poplars		
3.2. Eucalypts		
3.3. Black locust		
3.4. Paulownia		
Second part:	Lecture	5 hours
Introduction to class, second part		
4.Supply chains for energy wood procurement		
4.1. An overview of delivery systems and logistics		
4.2. Equipment and delivery systems used in the		
operational management of SRCs		
4.2.1. Understanding the operational performance in		
establishment operations		
4.2.2. Understanding the operational performance in		
harvesting and transportation operations		
4.2.3. Cost performance of delivery systems		
4.2.4. Environmental performance of delivery systems		
Third part:	Lecture	2 hours
Introduction to class, third part		
5.Biofuels		
5.1. Classification of biofuels		
5.2. Generations of biofuels		
5.3. Lignocellulosic biofuels		
5.4. Characteristics of woody biofuels		
6.Woody biofuels and conversion technologies	Lecture	2 hours
6.1. Conversion technology in general		
6.2. Conversion to heat		
6.3. Conversion to power		

6.4. Co-generation	
Bibliography	

First part:

- 1.Cannell, M.G.R., 2004: *Short rotation forestry for biomass production*. In: Encyclopedia of Forest Sciences, vol. 2 (ed. J. Burley, J. Evans, Y.A. Youngquist), Elsevier and Academic Press, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, pp. 872-877.
- 2.CREFF, 2012: *Technical Guide. Short rotation coppice*. <u>http://www.creff.eu</u>, 39 p.
- 3.Evans, J., 2004: *Forest plantations*. In: Encyclopedia of Forest Sciences, vol. 2 (ed. J. Burley, J. Evans, Y.A. Youngquist), Elsevier and Academic Press, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, pp. 822-828.
- 4.Guidi, W., Pitre, F.E., Labreque, M., 2013: Short-rotation coppice of willows for the production of biomass in eastern Canada. In: Biomass now – sustainable growth and use (ed. M.D. Matovic), INTECH, Open Science/Open Minds, DOI: 10.5772/2583, pp. 421-448.
- 5.Matthews, J.D., 1991: *Silvicultural systems*. Clarendon Press, Oxford, 284 p.
- 6.Nicolescu, V.N., Hochbichler, E., Bruckman, V.: *Sustainable biomass potentials from coppice forests for pyrolysis: chances and limitations.* In: Biochar: A regional supply chain approach in view of climate change mitigation (ed. V. Bruckman), Cambridge University Press, Cambridge (in press).
- 7.Nicolescu, V.N., 2014: *Silvicultură II. Silvotehnică*. Editura Aldus, Brașov, 289 p.
- 8.Savill., P., 2004: *Silvicultural systems*. In: Encyclopedia of Forest Sciences, vol. 3 (ed. J. Burley, J. Evans, Y.A. Youngquist), Elsevier and Academic Press, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, pp. 1003-1011.
- 9.Smith, D.M., Larson, B.C., Kelty, M.J., Ashton, P.M.S., 1997: *The practice of silviculture: applied forest ecology*. Ninth Edition. John Wiley and Sons, Inc., New York-Chichester-Brisbane-Toronto-Singapore-Weinheim, 537 p.
 Second part:
- 1.Berhongaray, G., El Kasmioui, O., Ceulemans, R. 2013: *Comparative analysis of harvesting machines on an operational high-density short rotation woody crop (SRWC) culture: One process versus two-process harvest operation.* Biomass and Bioenergy 58: 333–342.
- 2.Bush, C., Volk, T.A., Eisenbies, M.H., 2015: *Planting rates and delays during the establishment of willow biomass crops.* Biomass and Bioenergy 83: 290-296.
- 3.Bucholz, T., Volk, T.A., 2011: *Improving the profitability of willow crops identifying opportunities with a crop budget model.* Bioenergy Research 4: 85-95.
- 4.Danfors, B., Nordén, B., 1994: *Logistics for simultaneous harvesting and cutting of short rotation energy forest*. Swedish Institute of Agricultural Engineering, Ultuna Uppsala, JTI rapport 194, 55 p.
- 5.Ehlert, D., Pecenka, R., 2013: *Harvesters for short rotation coppice: Current status and new solutions*. International Journal of Forest Engineering 24: 170–182.
- 6.Eisenbies, M.H., Volk, T.A., Posselius, J., Foster, C., Shi, S., Karapetyan, S. 2014: *Evaluation of a single-pass, cut and chip harvest system on commercial-scale, short-rotation shrub willow biomass crops*. Bioenergy Research **7** (4): 1506-1518.
- 7.Forestry Commission, 1998: *Harvesting and comminution of short rotation coppice. Harvesting machine trials.* Technical Development Branch. Technical Note 8/98. Forestry Commission, Ae.
- 8.Guidi, W., Pitre, F.E., Labrecque, M., 2013: *Short rotation coppice of willows for the production of biomass in Eastern Canada*. In: Matovic M.D. (ed.) Biomass Now Sustainable Growth and Use, INTECH. p. 421-448.
- 9.Hartsough, B., Spinelli, R. 2001: *Recent reports on SRC harvesters in Europe. Productivities and costs of short rotation woody crops harvest technologies: projections for American plantations*. Final Report to Oak Ridge National Laboratory. Davis, University of California, USA.
- 10.Manzone, M., Balsari, P., 2014: *Planters performance during a very short rotation coppice planting*. Biomass and Bioenergy 67: 188-192.
- 11.Scholz, V., Ehlert, D., Hoffmann, T., Kern, J., Pecenka, R. 2011. *Cultivation, harvest and storage of short rotation*
coppice - Long-term field trials, environmental effects and optimization potentials. Journal of Agricultural Machinery Science 7: 205-210.

- 12.Schweier, J., Becker, G. 2012a: *New Holland forage harvester's productivity in short rotation coppice: Evaluation of field studies from a German perspective.* International Journal of Forest Engineering 23: 82-88.
- 13.Schweier, J., Becker, G. 2012b: *Harvesting of short rotation coppice Harvesting trials with a cut and storage system in Germany.* Silva Fennica 46 (2): 287-299.
- Spinelli, R., Schweier, J., De Francesco, F., 2012: *Harvesting techniques for non-industrial biomass-plantations*. Biosystems Engineering 113: 319-324.
- 17.Spinelli, R., Nati, C., Magagnotti, N. 2009: *Using modified foragers to harvest short-rotation poplar plantations*. Biomass & Bioenergy 33 (5): 817-821.
- 18.Spinelli, R., Magagnotti, N., Picchi, G., Lombardini, C., Nati, C. 2011: *Upsized harvesting technology for coping with the new trends in short-rotation coppice*. Applied Engineering in Agricultulture 27 (4): 551-557.
- 19.Tubby, I., Armstrong, A., 2002: *Establishment and management of short rotation coppice*. Practice note, Forestry Commission, 12 p.
- 20.van der Meijden, G.P.M., Gigler, J.K., 1995: *Harvesting techniques and logistics of short rotation energy forestry. A descriptive study on harvest and transport systems in Salix production currently used in Sweden*. Swedish Institute of Agricultural Engineering, Ultuna Uppsala, JTI rapport 200, 49 p.

21.0ther resources provided by the teacher.

Third part:

- 1.Krzysztof, J. Ptasinski, 2012: Efficiency of biomass energy: An exergy approach to biofuels, power, and biorefineries, John Wiley & Sons, 2012.
- 2.Sjaak Van Loo, Jaap Koppejan, 2008: The handbook of biomass combustion and co-firing, Earthscan, London, 2008.

8.2 Laboratory	Teaching-learning methods	Number of hours
1.Specific techniques and technologies for the	Case studies	2 hours
establishment and tending of stands/cultures used		
for energy wood production		
2. Portfolio specifications part 1	Presentation & Individual	1 hour
	work	
3.Methods and tools used in the assessment and	Case study	2 hours
development of effective supply chains for energy		
wood procurement		
4. Portfolio specifications part 2	Presentation & Individual	1 hour
	work	
5.Methods used in the design and implementation of	Case studies	2 hours
CHP facilities		
6.Portfolio specifications and preparation	Presentation & Individual	1 hour
	work	
7. On-site observation of SRC procurement operations	Field trip	5 hours
& conversion facilities		
Bibliography		
See the course bibliography.		

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian & international members of epistemic communities, professional associations and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that

10. Evaluation

Activity type		10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
				of the final grade
10.4 Course	•	Knowledge on advanced	Exam	50 %
		terminology in		
		silviculture, delivery		
		systems and conversion		
		, technology of wood into		
		energy		
	•	Capability to properly use		
		the concepts and		
		terminology specific to		
		procurement of wood for		
		energetic utilization		
		Canability to analyse and		
		interpret relevant case		
		studies and contexts in		
		the procurement of wood		
		for energetic utilization		
		Canability to build		
	-	argumentations on		
		complex case studies in		
		the procurement of wood		
		for operantic utilization		
	-			
	•	capability to evaluate,		
		argue and make decisions		
		in the presumment of		
		In the procurement of		
		wood for energetic		
		utilization		50 %
10.5 Laboratory	•	Development of own	Portfolio	50 %
		knowledge on the course		
		and laboratory contents		
	•	Capability to correctly use		
		the engineering		
		instruments, methods		
		and procedures in the		
		procurement of wood for		
		energetic utilization		
	•	Capability to build own		
		arguments and to defend		
		own ideas		
	•	Capability to evaluate		
		own and others'		
		arguments		

10.6 Minimal performance standard

- Students should be able to correctly describe the specific issues related to the resources of energy wood as well as to the establishment and tending of stands/cultures designated to energy wood production;
- Students should be able to correctly describe and argument the effectiveness of a given wood supply chain / logistics as used in the procurement of wood for energetic utilization;
- Students should be able to correctly classify the biofuels and to describe and argument the effectiveness of a given conversion technology.

This course outline was certified in the Department Board meeting on 29.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. dr. eng. Alexandru Lucian CURTU	Prof. dr. eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof.dr.eng. Valeriu Norocel Nicolescu	Prof.dr.eng. Valeriu Norocel Nicolescu
Prof.dr.eng. Stelian Alexandru Borz	Prof.dr.eng. Stelian Alexandru Borz
Asist.prof.dr.eng. Cezar Scriba	Asist.prof.dr.eng. Cezar Scriba
Course holders	Holders of laboratory

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorate (to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorate;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options: FC (fundamental course) / DC (course in the study domain) / SC (specialty course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC (advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC (non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

1.1 Higher education institution	Transilvania University of Brasov	
1.2 Faculty Faculty of Silviculture and Forest Engineering		
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial	
	Measurements	
1.4 Field of study	Forestry	
1.5 Study level	Master	
1.6 Study programme/Qualification	Multiple Purpose Forestry / Master in Forest Sciences	

2. Data about the course

2.1 Name of cour	se		Life Cycle Assessment in Forestry					
2.2 Course conve	nor		Prof. dr. eng. Stelian Alexandru Borz					
2.3 Laboratory			Prof. dr. eng. Stelian Alexandru Borz					
2.4 Study year II 2.5 Semester			I	2.6 Evaluation type	Е	2.7 Course	Content	AC
						status	Attendance type	EC

3. Total estimated time

3.1 Number of hours per week 3 out of which			ch: 3.2 lec	ture	1	3.3 laboratory	2
3.4 Total number of hours in 42 out of whic			ch: 3.5 lec	ture	14	3.6 laboratory	28
the curriculum							
Time allocation							hours
Study of textbooks, course support, bibliography and notes							43
Additional documentation in libraries, specialized electronic platforms, and field research						30	
Preparation of portfolios, and essays						57	
Tutorial						4	
Examinations							4
3.7 Total number of hours of student activity 138							
3.8 Total number per semester 180							
3.9 Number of credits 6							

4. Prerequisites

4.1 curriculum-related	• The attendees will have basic knowledge of Ecology, Forest Engineering and
	Chemistry
4.2 competences-related	The attendees will have basic knowledge of computer use

5. Conditions

5.1 for course development	Course attendance is facultative
5.2 for laboratory	Laboratory attendance is compulsory

6. Specific competences

SS	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems. Relevance to Course:
competenci	The course equips students with the foundational understanding and practical application of Life Cycle Assessment (LCA) concepts and tools to evaluate forest operations and environmental impacts effectively.
Professional	 CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and strategic systems LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector. LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector. Relevance to Course:
	The focus on LCA ties directly to assessing the economic and environmental trade-offs in forestry practices, aligning with policy and strategic decision-making requirements.
	 CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners
S	Relevance to Course:
competence	Group-based laboratory work and presentations enhance teamwork and communication skills, fostering collaboration on complex LCA projects.
Transversal	 CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to the dynamics of the field and labor market demands LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice. LO 3.2: The graduate identifies opportunities for continuous professional development
	Relevance to Course:
	LCA is a constantly evolving field. This course encourages the students to stay updated with the latest methodologies and technologies in environmental assessment.

7. Course objectives

7.1 General course objective		To familiarize the students with the advanced knowledge and the state-of-
		art approaches used in the environmental assessment.
7.2 Specific objectives	•	To define, elaborate (deepen) and use the concepts, methods, instruments

	reaching meanous	Number of fields
0.Introduction to class	Lecture	2 hours
1.An introduction to LCA		
1.1. Main characteristics of LCA		
1.1.1. What is LCA?		
1.1.2. Role of LCA in relation to products		
1.1.3. Role of LCA in wider applications		
1.2. Limitations of LCA		
1.3. LCA as a part of a toolbox		
1.4. History and development of LCA		
2. Management of LCA projects	Lecture	2 hours
2.1. Designing an LCA project		
2.2. Context of an LCA project		
2.3. Process management in LCA		
2.4. Organization and assignment		
2.5. Reporting an LCA project		
3.Goal and scope definition	Lecture	2 hours
3.1. Procedures		
3.2. Goal definition		
3.3. Scope definition		
3.4. Functional unit		
3.5. Results of goal and scope definition		
4.Inventory analysis	Lecture	3 hours
4.1. Procedures		
4.2. System boundary		
4.3. Flow diagram		
4.4. Format and data categories		
4.5. Data quality		
4.6. Data collection		
4.7. Relating data to unit processes		
4.8. Data validation		
4.9. Cut-off and data estimation		
4.10. Multifunctionality and allocation		
4.11. Calculation method		
4.12. Results of inventory analysis		
5.Impact assessment	Lecture	3 hours
5.1. Procedures		
5.2. Impact categories		
5.3. Characterization methods		
5.4. Classification		
5.5. Characterization		

6.4. Contribution analysis	
6.5. Perturbation analysis	
6.6. Sensitivity and uncertainty analysis	
6.7. Conclusions and recommendations	
6.8. Results of interpretation	

Bibliography

1.Guinée J.B., Gorrée M., Heijungs R., Huppes G., Kleijn R., de Koning A., van Oers L., Wegener Sleeswijk A., Suh S., de Haes H.A.U., de Bruijn H., van Duin R., Huijbregts M.A.J., Lindeijer E., Roorda A.A.H., van der Ven B.L., Weidema B.P. (2004). Handbook on Life Cycle Assessment. Operational Guide to ISO Standards. Kluwer Academic Publishers.

2.Klein D., Wolf C., Schulz C., Weber-Blaschke G. (2015). 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodological proposal for the LCA of forest production. International Journal of Life Cycle Analysis 20:556-575.

3.Heinimann H.R. (2012). Life cycle assessment in forestry - State and perspectives. Croatian Journal of Forest Engineering 33 (2): 357-372.

4. PRé Consultants (2013) SimaPro Introduction to LCA

5. ISO LCA Series of Standards.

Teaching-learning methods	Number of hours
Presentation	2 hours
Presentation & Assignment	2 hours
of work	
Group work	22 hours
Individual work	2 hours
	Teaching-learning methods Presentation Presentation &Assignment of work Group work Individual work

Bibliography

1.Guinée J.B., Gorrée M., Heijungs R., Huppes G., Kleijn R., de Koning A., van Oers L., Wegener Sleeswijk A., Suh S., de Haes H.A.U., de Bruijn H., van Duin R., Huijbregts M.A.J., Lindeijer E., Roorda A.A.H., van der Ven B.L., Weidema B.P. (2004). Handbook on Life Cycle Assessment. Operational Guide to ISO Standards. Kluwer Academic Publishers.

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian & international members of epistemic communities, professional associations and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included discussions with Romanian and European experts in the field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
			of the final grade
10.4 Course	• Knowledge o	f Written exam	40 %
	terminology in Life Cycl		

	interpret relevant case		
	studies and contexts		
	specific to Life Cycle		
	Assessment		
	Capability to build		
	argumentations on		
	complex case studies		
	• Capability to evaluate,		
	argue and make decisions		
	on complex case studies		
10.5 Laboratory	Development of own	Portfolio	60 %
	knowledge on the course		
	and laboratory contents		
	Capability to correctly use		
	the instruments and		
	procedures of Life Cycle		
	Assessment		
	Capability to build own		
	arguments and to defend		
	own ideas		
	Capability to evaluate		
	own and others'		
	arguments		

• Students will be able to handle specific software to run Life Cycle Analyses, proven by the portfolio contents.

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. dr. eng. Alexandru Lucian CURTU	Prof. dr. eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof. dr. eng. Stelian Alexandru BORZ	Prof. dr. eng. Stelian Alexandru BORZ
Course holder	Holder of seminar/ laboratory/ project

(course in the study domain)/ SC (specialty course)/ CC (complementary course); for the Master level, select one of the following options: PC (proficiency course)/ SC (synthesis course)/ AC(advanced course);

- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC(non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25 study hours (teaching activities and individual study).

COURSE OUTLINE

1. Data about the study programme

, , , , , , , , , , , , , , , , , , ,	
1.1 Higher education institution	Transilvania University of Brasov
1.2 Faculty	Faculty of Silviculture and Forest Engineering
1.3 Department	Forest Engineering, Forest Management Planning and Terrestrial
	Measurements
1.4 Field of study	Forestry
1.5 Study level	MA
1.6 Study programme/Qualification	Multiple Purpose Forestry / Master in Forest Sciences

2. Data about the course

2.1 Name of cour	se		Bus	iness Process Manage	emen	t in Forestry		
2.2 Course convenor			Prof. dr. eng. Stelian Alexandru Borz					
2.3 Laboratory			Pro	f. dr. eng. Stelian Alexa	Indru	Borz		
2.4 Study year	П	2.5 Semester	Ш	2.6 Evaluation type	Е	2.7 Course	Content	AC
						status	Attendance type	EC

3. Total estimated time

3.1 Number of hours per week	3	out of which: 3.2 le	ecture	1	3.3 laboratory		2
3.4 Total number of hours in	42	out of which: 3.5 le	ecture	14	3.6 laboratory		28
the curriculum							
Time allocation							hours
Study of textbooks, course support, bibliography, and notes 38					38		
Additional documentation in libraries, specialized electronic platforms, and field research					32		
Preparation of portfolios, and essays 6					60		
Tutorial 4					4		
Examinations					4		
3.7 Total number of hours of stu	ıdent a	ctivity 138					
3.8 Total number per semester		180]				

4. Prerequisites

3.9 Number of credits

4.1 curriculum-related	• The attendees will have basic knowledge of Business Administration, Forest
	Engineering and Logistics
4.2 competences-related	The attendees will have basic knowledge of computer use

6

5. Conditions

5.1 for course development	•	Course attendance is facultative
5.2 for laboratory	•	Laboratory attendance is compulsory

6. Specific competences

	CP.1: Analysis, characterization, evaluation, and modeling of forest ecosystems and technical forest production
	systems
	 LO 1.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in forest ecosystem management and forest production systems.
	• LO 1.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to forest ecosystem management and forest production systems. Relevance to Course:
competences	The course formalizes the students with the concepts of modelling and evaluating the business processes, aiming at radical change and improvement of forest-based business with the main goal to support the competitive advantage and business resilience on currently volatile markets.
ssional	CP.2: Analysis, characterization, evaluation, and modeling of forest-related economic, regulatory, political, and strategic systems
Profe	• LO 2.1: The graduate understands the concepts, theories, principles, methods, techniques, and technologies applied and anticipated in economic, regulatory, political, and strategic systems in the forestry sector.
	• LO 2.2: The graduate applies/uses concepts, theories, principles, methods, techniques, and technologies related to economic, regulatory, political, and strategic systems in the forestry sector.
	Relevance to Course:
	The focus is on the methods, tools and procedures used to evaluate the state-of-art economic and strategic business problems in terms of processes and then to (re)engineer the processes aiming at business effectiveness.
	CT.1: Mastery of techniques and procedures for interaction, networking, and communication at the micro- and macro-social and institutional levels in the forestry sector
	• LO 1.3: The graduate employs effective communication strategies and techniques within the team and with external partners.
	Relevance to Course:
ompetences	Group-based laboratory work and presentations enhance teamwork and communication skills, fostering collaboration on complex business models.
al co	CT.3: Objective self-evaluation of the need for continuous professional development to adapt competences to
vers	the dynamics of the field and labor market demands
rans	• LO 3.1: The graduate keeps updated with advances in techniques and research in their field of practice.
Ξ	• LO 3.2: The graduate identifies opportunities for continuous professional development.
	Relevance to Course:
	Markets are continuously changing, requiring managers able to improve the competitive advantage of their businesses. This course encourages the students to stay updated with the latest methodologies and technologies used to stay competitive on the market.

7. Course objectives

7.1 General course objective	•	To familiarize the students with the advanced knowledge and the state-of-
		art approaches used in the Business Process Management in Forestry.
7.2 Specific objectives	•	To define, elaborate (deepen) and apply the concepts, methods, instruments

and approaches specific to Business Process Management;
• To understand the context of Business Process Management as part of
broader business assessment methods;
• To develop the personal and interpersonal skills related to engineering,
research, and social dimensions.

8. Content

8.1 Course	Teaching methods	Remarks			
1. Course outline	Lecture	2 hours			
2.1. Introduction to Business Process Management					
2.2. Definition of a process					
2.3. Types of processes					
2.4. Examples of processes					
2.5. Importance of processes in business					
2.6. Normalization of deviance and its implications					
2. Business Process Management	Lecture	2 hours			
2.1. Definition of Business Process Management					
2.2. Scope of Business Process Management					
2.3. Process owner					
2.4. Process management by collaboration					
2.5. Process optimization					
2.6. Managing processes by automation					
3.Business Process Analysis	Lecture	5 hours			
3.1. Definition of Business Process Analysis					
3.2. Scope of Business Process Analysis					
3.3. Process benchmarking					
3.4. Process mapping					
3.5. BPM software					
4.Business Process Reengineering	Lecture	3 hours			
4.1. Definition of Business Process Reengineering					
4.2. Scope of Business Process Reengineering					
4.3. Steps of Business Process Reengineering					
4.4. Examples of Business Process Reengineering					
4.5. Best Practices of Business Process Reengineering					
4.6. Outsourcing of Business Process Reengineering					
5.Recapitulation	Lecture	2 hours			
Bibliography					
Hammer M., Champy J., 2002. Reengineering the corporation. A manifesto for business revolution. Harper Collins					
Publishers Inc., 257 p.					
Rauch P., Borz S.A., 2020: Reengineering the Romanian	Timber Supply Chain from a Pr	ocess Management Perspective.			
Croatian Journal of Forest Engineering, 41(1), 85-94.					
8.2 Laboratory	Teaching-learning methods	Remarks			
1.Outline	Presentation& Individual	2 hours			
1.1. Laboratory outline	Work				
1.2. Setup of activities					
2. Setup and introduction to Bee Up software	Presentation & Individual	4 hours			
2.1. Features & functionalities	Work				
2.2. Setting up a BPM project					

3. Process benchmarking & mapping	Presentation & Teamwork	14 hours		
3.1. Setup of work groups & assignments	on Case Studies			
3.2. Design of the questionnaire				
3.3. Drawing up a preliminary process flow				
3.4. Data benchmarking &collection				
3.5. Mapping of process flow				
4. Business process reengineering	Presentation & Teamwork	6 hours		
4.1. Brainstorming session	on Case Studies			
4.2. Drawing up & checking for validity the				
improvement paths				
4.3. Map redesign				
4.4. Follow up				
5. Portfolio specifications and preparation - final part	Presentation & Teamwork	2 hours		
Bibliography				
Brandall B., Henshall A. The Complete Guide to Business Process Management. Process.st, 110p.				
Bee-Up software documentation. Available at: <u>https://bee-up.omilab.org/activities/bee-up/</u>				

9. Correlation of course content with the demands of the labour market (epistemic communities, professional associations, potential employers)

The contents of this course have been developed in accordance with the strategy and vision of Faculty of Silviculture and Forest Engineering, based on the suggestions made by the Romanian & international members of epistemic communities, professional associations, and potential employers. Furthermore, the course contents were aligned to the national qualification system and to the European qualification framework by a participative approach that included discussions with Romanian and European experts in the field.

10. Evaluation

Activity type		10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage
10.4 Course	•	Knowledge of	Written exam	40 %
		terminology in Business		
		Process Management		
	•	Capability to properly use		
		the concepts and		
		terminology of Business		
		Process Management		
	•	Capability to analyse and		
		interpret relevant case		
		studies and contexts		
		specific to Business		
		Process Management		
	•	Capability to build		
		argumentations on		
		complex case studies		
	•	Capability to evaluate,		
		argue and make decisions		
		on complex case studies		

10.5 Laboratory	• Development of own	Portfolio	60 %
	knowledge on the course		
	and laboratory contents		
	Capability to correctly use		
	the instruments and		
	procedures of Business		
	Process Management		
	• Capability to build own		
	arguments and to defend		
	own ideas		
	• Capability to evaluate		
	own and others'		
	arguments		
10.6 Minimal performance standa	rd		

• Students will be able to correctly describe the main steps of implementing Business Process Management procedures and to argument its effectiveness in forestry;

• Students will be able to handle specific software to build BPM workflows, proven by the portfolio contents.

This course outline was certified in the Department Board meeting on 27.09.2024 and approved in the Faculty Board meeting on 30.09.2024.

Prof. dr. eng. Alexandru Lucian CURTU	Prof. dr. eng. Stelian Alexandru BORZ
Dean	Head of Department
Prof. dr. eng. Stelian Alexandru BORZ	Prof. dr. eng. Stelian Alexandru BORZ
Course holder	Holder of seminar/ laboratory/ project

Note:

- 1) Field of study select one of the following options: Bachelor / Master / Doctorate(to be filled in according to the forceful classification list for study programmes);
- ²⁾ Study level choose from among: Bachelor / Master / Doctorate;
- ³⁾ Course status (content) for the Bachelor level, select one of the following options:FC (fundamental course) / DC (course in the study domain) / SC (specialty course) / CC (complementary course); for the Master level, select one of the following options: PC (proficiency course) / SC (synthesis course) / AC(advanced course);
- ⁴⁾ Course status (attendance type) select one of the following options: CPC (compulsory course)/ EC (elective course)/ NCPC(non-compulsory course);
- ⁵⁾ One credit is the equivalent of 25study hours (teaching activities and individual study).